缩短锂离子电池充电时间的神经网络升压充电设计

Sue Hyang Lim, S. Kim, Hyeong Min Lee, Sijun Kim, Y. Shin
{"title":"缩短锂离子电池充电时间的神经网络升压充电设计","authors":"Sue Hyang Lim, S. Kim, Hyeong Min Lee, Sijun Kim, Y. Shin","doi":"10.1109/ICDMW51313.2020.00109","DOIUrl":null,"url":null,"abstract":"Rapid charging of Li-ion batteries is vital for the commercialization of electric propulsion systems. But, during the fast-charging process, reduction in the battery capacity and temperature increases must be considered in real-time. Most Li-ion battery chargers follow the charging profile of an open-loop system, which has been determined based on prior knowledge. However, such a system does not reflect the temperature change of the battery and the degree of aging. Therefore, in this study, we propose a neural network-based charging profile model by applying a closed-loop system to reflect the various states of batteries; we also show two battery-state characteristics in addition to temperature. Consequently, we show battery characteristics other than those shown in the past, such as the battery voltage and temperature trends. In addition to the design of the charging current, an improvement of approximately 22 ∼ 50% based on the mean absolute error (MAE) is achieved. By considering the various characteristics, the long short-term memory performance is determined to be better when compared to the feed-forward neural network, and this performance is improved by 35% based on MAE.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of Neural Network-based Boost Charging for Reducing the Charging Time of Li-ion Battery\",\"authors\":\"Sue Hyang Lim, S. Kim, Hyeong Min Lee, Sijun Kim, Y. Shin\",\"doi\":\"10.1109/ICDMW51313.2020.00109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid charging of Li-ion batteries is vital for the commercialization of electric propulsion systems. But, during the fast-charging process, reduction in the battery capacity and temperature increases must be considered in real-time. Most Li-ion battery chargers follow the charging profile of an open-loop system, which has been determined based on prior knowledge. However, such a system does not reflect the temperature change of the battery and the degree of aging. Therefore, in this study, we propose a neural network-based charging profile model by applying a closed-loop system to reflect the various states of batteries; we also show two battery-state characteristics in addition to temperature. Consequently, we show battery characteristics other than those shown in the past, such as the battery voltage and temperature trends. In addition to the design of the charging current, an improvement of approximately 22 ∼ 50% based on the mean absolute error (MAE) is achieved. By considering the various characteristics, the long short-term memory performance is determined to be better when compared to the feed-forward neural network, and this performance is improved by 35% based on MAE.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

锂离子电池的快速充电对于电力推进系统的商业化至关重要。但是,在快速充电过程中,必须实时考虑电池容量的减少和温度的升高。大多数锂离子电池充电器遵循开环系统的充电曲线,这是基于先验知识确定的。但是,这样的系统并不能反映电池的温度变化和老化程度。因此,在本研究中,我们提出了一种基于神经网络的充电剖面模型,该模型采用闭环系统来反映电池的各种状态;除了温度,我们还展示了两个电池状态特性。因此,我们展示了不同于以往的电池特性,例如电池电压和温度趋势。除了充电电流的设计之外,基于平均绝对误差(MAE)的改进约为22 ~ 50%。综合考虑各种特征,确定了与前馈神经网络相比长短期记忆性能更好,并且基于MAE的长短期记忆性能提高了35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Neural Network-based Boost Charging for Reducing the Charging Time of Li-ion Battery
Rapid charging of Li-ion batteries is vital for the commercialization of electric propulsion systems. But, during the fast-charging process, reduction in the battery capacity and temperature increases must be considered in real-time. Most Li-ion battery chargers follow the charging profile of an open-loop system, which has been determined based on prior knowledge. However, such a system does not reflect the temperature change of the battery and the degree of aging. Therefore, in this study, we propose a neural network-based charging profile model by applying a closed-loop system to reflect the various states of batteries; we also show two battery-state characteristics in addition to temperature. Consequently, we show battery characteristics other than those shown in the past, such as the battery voltage and temperature trends. In addition to the design of the charging current, an improvement of approximately 22 ∼ 50% based on the mean absolute error (MAE) is achieved. By considering the various characteristics, the long short-term memory performance is determined to be better when compared to the feed-forward neural network, and this performance is improved by 35% based on MAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1