基于场景的双基地雷达波形估计的cram - rao下界和估计算法

M. Coutiño, A. M. Sardarabadi, P. Cox, W. V. van Rossum, L. Anitori
{"title":"基于场景的双基地雷达波形估计的cram<s:1> - rao下界和估计算法","authors":"M. Coutiño, A. M. Sardarabadi, P. Cox, W. V. van Rossum, L. Anitori","doi":"10.1109/RadarConf2351548.2023.10149689","DOIUrl":null,"url":null,"abstract":"Cooperative radar operations typically rely on the exchange of a limited amount of information to improve the quality of the estimated targets parameters. Unfortunately, in many instances, not all necessary information can be accessed or communicated, e.g., no line of sight (LOS) or limited resources. This problem is exacerbated with the inset of novel (irregular) waveforms, exhibiting large number of degrees of freedom, on transmit. For example, where both monostatic and bistatic measurements are available, enhanced parameter estimation can be achieved through sharing only the synchronization and geographical information between two platforms. In this paper, we focus on this scenario and derive the Cramer- Rao lower bound for the estimation of the unknown bistatic waveform under no-LOS mild assumptions on the second-order statistic of the bistatic and monostatic returns. Also, we devise a set of algorithms exploiting the monostatic estimated scene, based on spectral methods, factor analysis and calibration techniques. Through numerical experiments, we compare the performance and discuss the limitations of the introduced techniques.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cramér-Rao Lower Bound and Estimation Algorithms For Scene-based Bistatic Radar Waveform Estimation\",\"authors\":\"M. Coutiño, A. M. Sardarabadi, P. Cox, W. V. van Rossum, L. Anitori\",\"doi\":\"10.1109/RadarConf2351548.2023.10149689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative radar operations typically rely on the exchange of a limited amount of information to improve the quality of the estimated targets parameters. Unfortunately, in many instances, not all necessary information can be accessed or communicated, e.g., no line of sight (LOS) or limited resources. This problem is exacerbated with the inset of novel (irregular) waveforms, exhibiting large number of degrees of freedom, on transmit. For example, where both monostatic and bistatic measurements are available, enhanced parameter estimation can be achieved through sharing only the synchronization and geographical information between two platforms. In this paper, we focus on this scenario and derive the Cramer- Rao lower bound for the estimation of the unknown bistatic waveform under no-LOS mild assumptions on the second-order statistic of the bistatic and monostatic returns. Also, we devise a set of algorithms exploiting the monostatic estimated scene, based on spectral methods, factor analysis and calibration techniques. Through numerical experiments, we compare the performance and discuss the limitations of the introduced techniques.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

协同雷达作战通常依赖于有限数量的信息交换来提高估计目标参数的质量。不幸的是,在许多情况下,并非所有必要的信息都可以访问或交流,例如,没有视线或资源有限。在传输中插入新的(不规则的)波形,显示出大量的自由度,使这个问题更加严重。例如,在单站和双站测量都可用的情况下,可以通过在两个平台之间仅共享同步和地理信息来实现增强的参数估计。本文针对这种情况,在双稳态和单稳态收益的二阶统计量上,导出了在无los温和假设下未知双稳态波形估计的Cramer- Rao下界。此外,我们还设计了一套基于光谱方法、因子分析和校准技术的单静态估计场景算法。通过数值实验,我们比较了这些技术的性能并讨论了它们的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cramér-Rao Lower Bound and Estimation Algorithms For Scene-based Bistatic Radar Waveform Estimation
Cooperative radar operations typically rely on the exchange of a limited amount of information to improve the quality of the estimated targets parameters. Unfortunately, in many instances, not all necessary information can be accessed or communicated, e.g., no line of sight (LOS) or limited resources. This problem is exacerbated with the inset of novel (irregular) waveforms, exhibiting large number of degrees of freedom, on transmit. For example, where both monostatic and bistatic measurements are available, enhanced parameter estimation can be achieved through sharing only the synchronization and geographical information between two platforms. In this paper, we focus on this scenario and derive the Cramer- Rao lower bound for the estimation of the unknown bistatic waveform under no-LOS mild assumptions on the second-order statistic of the bistatic and monostatic returns. Also, we devise a set of algorithms exploiting the monostatic estimated scene, based on spectral methods, factor analysis and calibration techniques. Through numerical experiments, we compare the performance and discuss the limitations of the introduced techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1