Zeeshan Ahmad , Victor Venturi , Shashank Sripad , Venkatasubramanian Viswanathan
{"title":"化学力学:固态电池的“与问题”是敌是友?","authors":"Zeeshan Ahmad , Victor Venturi , Shashank Sripad , Venkatasubramanian Viswanathan","doi":"10.1016/j.cossms.2022.101002","DOIUrl":null,"url":null,"abstract":"<div><p>Solid electrolytes are widely considered as the enabler of lithium metal anodes for safe, durable, and high energy density rechargeable lithium-ion batteries. Despite the promise, failure mechanisms associated with solid-state batteries are not well-established, largely due to limited understanding of the chemomechanical factors governing them. We focus on the recent developments in understanding solid-state aspects including the effects of mechanical stresses, constitutive relations, fracture, and void formation, and outline the gaps in the literature. We also provide an overview of the manufacturing and processing of solid-state batteries in relation to chemomechanics. The gaps identified provide concrete directions towards the rational design and development of failure-resistant solid-state batteries.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 4","pages":"Article 101002"},"PeriodicalIF":12.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Chemomechanics: Friend or foe of the “AND problem” of solid-state batteries?\",\"authors\":\"Zeeshan Ahmad , Victor Venturi , Shashank Sripad , Venkatasubramanian Viswanathan\",\"doi\":\"10.1016/j.cossms.2022.101002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid electrolytes are widely considered as the enabler of lithium metal anodes for safe, durable, and high energy density rechargeable lithium-ion batteries. Despite the promise, failure mechanisms associated with solid-state batteries are not well-established, largely due to limited understanding of the chemomechanical factors governing them. We focus on the recent developments in understanding solid-state aspects including the effects of mechanical stresses, constitutive relations, fracture, and void formation, and outline the gaps in the literature. We also provide an overview of the manufacturing and processing of solid-state batteries in relation to chemomechanics. The gaps identified provide concrete directions towards the rational design and development of failure-resistant solid-state batteries.</p></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"26 4\",\"pages\":\"Article 101002\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028622000225\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000225","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemomechanics: Friend or foe of the “AND problem” of solid-state batteries?
Solid electrolytes are widely considered as the enabler of lithium metal anodes for safe, durable, and high energy density rechargeable lithium-ion batteries. Despite the promise, failure mechanisms associated with solid-state batteries are not well-established, largely due to limited understanding of the chemomechanical factors governing them. We focus on the recent developments in understanding solid-state aspects including the effects of mechanical stresses, constitutive relations, fracture, and void formation, and outline the gaps in the literature. We also provide an overview of the manufacturing and processing of solid-state batteries in relation to chemomechanics. The gaps identified provide concrete directions towards the rational design and development of failure-resistant solid-state batteries.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field