有意义文本分析在在线产品评论中的应用

C. Bǎdicǎ, Georgian Vladutu
{"title":"有意义文本分析在在线产品评论中的应用","authors":"C. Bǎdicǎ, Georgian Vladutu","doi":"10.1109/SYNASC.2018.00057","DOIUrl":null,"url":null,"abstract":"Online reviews have a significant impact on opinion sharing, thus playing an important role in the purchase process. In this paper we examine the relations between the online review rating score and helpfulness on one hand and attributes measured by the readability tests on the other hand. Furthermore we investigated the interaction between users and, based on our data sets, we found that most of these are between customers and product owners. Lastly we proposed a sentiment analysis algorithm of reviews and we experimentally evaluated it using the review rating scores.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of Meaningful Text Analytics to Online Product Reviews\",\"authors\":\"C. Bǎdicǎ, Georgian Vladutu\",\"doi\":\"10.1109/SYNASC.2018.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online reviews have a significant impact on opinion sharing, thus playing an important role in the purchase process. In this paper we examine the relations between the online review rating score and helpfulness on one hand and attributes measured by the readability tests on the other hand. Furthermore we investigated the interaction between users and, based on our data sets, we found that most of these are between customers and product owners. Lastly we proposed a sentiment analysis algorithm of reviews and we experimentally evaluated it using the review rating scores.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在线评论对意见分享有显著影响,因此在购买过程中起着重要作用。本文研究了在线评论评分分数和有用性与可读性测试所测量的属性之间的关系。此外,我们调查了用户之间的交互,根据我们的数据集,我们发现大多数交互是在客户和产品所有者之间进行的。最后,我们提出了一种评论情感分析算法,并利用评论评级分数对其进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Meaningful Text Analytics to Online Product Reviews
Online reviews have a significant impact on opinion sharing, thus playing an important role in the purchase process. In this paper we examine the relations between the online review rating score and helpfulness on one hand and attributes measured by the readability tests on the other hand. Furthermore we investigated the interaction between users and, based on our data sets, we found that most of these are between customers and product owners. Lastly we proposed a sentiment analysis algorithm of reviews and we experimentally evaluated it using the review rating scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1