用独立分量分析从分段恒定增益混合物中盲分离信号

H. Pullela, P. Rajan
{"title":"用独立分量分析从分段恒定增益混合物中盲分离信号","authors":"H. Pullela, P. Rajan","doi":"10.1109/SSST.2004.1295700","DOIUrl":null,"url":null,"abstract":"An algorithm is developed to separate signals mixed with piecewise constant matrices. Independent component analysis technique is employed to separate the signals. Algorithms are presented to identify the lengths of the segments and remove order, scaling and sign ambiguities present in the independent component analysis of consecutive segments.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind separation of signals from piece-wise constant gain mixtures using independent component analysis\",\"authors\":\"H. Pullela, P. Rajan\",\"doi\":\"10.1109/SSST.2004.1295700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is developed to separate signals mixed with piecewise constant matrices. Independent component analysis technique is employed to separate the signals. Algorithms are presented to identify the lengths of the segments and remove order, scaling and sign ambiguities present in the independent component analysis of consecutive segments.\",\"PeriodicalId\":309617,\"journal\":{\"name\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2004.1295700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种分离分段常数矩阵混合信号的算法。采用独立分量分析技术对信号进行分离。提出了算法来识别片段的长度,并消除顺序,比例和符号歧义存在于连续片段的独立分量分析中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind separation of signals from piece-wise constant gain mixtures using independent component analysis
An algorithm is developed to separate signals mixed with piecewise constant matrices. Independent component analysis technique is employed to separate the signals. Algorithms are presented to identify the lengths of the segments and remove order, scaling and sign ambiguities present in the independent component analysis of consecutive segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter complexity analysis of hyper-spectral bands Performance analysis of UNIX user datagram protocol implementations On the complexity and accuracy of motion estimation using Lie operators Real time modeling and control of circulating fluidized bed Vehicle lateral control using a double integrator control strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1