多层陶瓷电容器的弯曲裂纹:断裂扩展实验

J. Ahmar, E. Wiss, S. Wiese
{"title":"多层陶瓷电容器的弯曲裂纹:断裂扩展实验","authors":"J. Ahmar, E. Wiss, S. Wiese","doi":"10.1109/ESTC.2018.8546356","DOIUrl":null,"url":null,"abstract":"Cracking of the brittle X7R BaTiO3 ceramic dielectric material is a severe problem in areas where large sized multilayer ceramic capacitors (MLCC) are needed to provide larger capacities or higher dielectric strength for high voltage applications. Therefore the understanding of the crack formation within multilayer ceramic capacitors (MLCC) is an important issue. The paper will describe four-point-bending experiment on MLCCs, which were soldered on a pcb. The experimental design considered existing tests for the qualification of MLCC components. Basing on these considerations a specimen was designed that is able to detect the crack event via an in situ capacitance measurement. For the fabrication of the specimens two types of capacitors were chosen: MLCC 1206 and MLCC 1812. Both were made from an X7R BaTiO3 ceramic dielectric material. The substrate consisted on a 1.6 mm thick FR 4 pcb stripe having the same width as the capacitors. The capacitors were soldered using SnPbAg2, SnAg0.3Cu0.7 and SnAg3.8Cu0.7 solder alloys. After testing all samples were metallographically prepared, to analyze the cracks within the ceramic body of the capacitor by light microscopy. The paper will present the results of these microscopic studies, with regard to the crack shape that was found in the microsections of the tested specimens. The dependence of crack shape on the employed capacitor geometry and on the used solder alloy will be discussed.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flex Cracking of Multilayer Ceramic Capacitors: Experiments on Fracture Propagation\",\"authors\":\"J. Ahmar, E. Wiss, S. Wiese\",\"doi\":\"10.1109/ESTC.2018.8546356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cracking of the brittle X7R BaTiO3 ceramic dielectric material is a severe problem in areas where large sized multilayer ceramic capacitors (MLCC) are needed to provide larger capacities or higher dielectric strength for high voltage applications. Therefore the understanding of the crack formation within multilayer ceramic capacitors (MLCC) is an important issue. The paper will describe four-point-bending experiment on MLCCs, which were soldered on a pcb. The experimental design considered existing tests for the qualification of MLCC components. Basing on these considerations a specimen was designed that is able to detect the crack event via an in situ capacitance measurement. For the fabrication of the specimens two types of capacitors were chosen: MLCC 1206 and MLCC 1812. Both were made from an X7R BaTiO3 ceramic dielectric material. The substrate consisted on a 1.6 mm thick FR 4 pcb stripe having the same width as the capacitors. The capacitors were soldered using SnPbAg2, SnAg0.3Cu0.7 and SnAg3.8Cu0.7 solder alloys. After testing all samples were metallographically prepared, to analyze the cracks within the ceramic body of the capacitor by light microscopy. The paper will present the results of these microscopic studies, with regard to the crack shape that was found in the microsections of the tested specimens. The dependence of crack shape on the employed capacitor geometry and on the used solder alloy will be discussed.\",\"PeriodicalId\":198238,\"journal\":{\"name\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2018.8546356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在需要大尺寸多层陶瓷电容器(MLCC)为高压应用提供更大容量或更高介电强度的领域,脆性X7R BaTiO3陶瓷介电材料的开裂是一个严重的问题。因此,了解多层陶瓷电容器(MLCC)内部裂纹的形成是一个重要的问题。本文将描述焊接在pcb上的mlcc的四点弯曲实验。实验设计考虑了现有的MLCC部件鉴定试验。基于这些考虑,设计了一种能够通过原位电容测量来检测裂纹事件的试样。为了制作样品,选择了MLCC 1206和MLCC 1812两种类型的电容器。两者均由X7R BaTiO3陶瓷介电材料制成。衬底由1.6毫米厚的f4pcb条纹组成,其宽度与电容器相同。电容器采用SnPbAg2、SnAg0.3Cu0.7和SnAg3.8Cu0.7焊料合金进行焊接。测试后,对所有样品进行金相分析,用光学显微镜分析电容器陶瓷体内的裂纹。本文将介绍这些微观研究的结果,关于在测试样品的显微切片中发现的裂纹形状。将讨论裂纹形状与所采用的电容器几何形状和所使用的焊料合金的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flex Cracking of Multilayer Ceramic Capacitors: Experiments on Fracture Propagation
Cracking of the brittle X7R BaTiO3 ceramic dielectric material is a severe problem in areas where large sized multilayer ceramic capacitors (MLCC) are needed to provide larger capacities or higher dielectric strength for high voltage applications. Therefore the understanding of the crack formation within multilayer ceramic capacitors (MLCC) is an important issue. The paper will describe four-point-bending experiment on MLCCs, which were soldered on a pcb. The experimental design considered existing tests for the qualification of MLCC components. Basing on these considerations a specimen was designed that is able to detect the crack event via an in situ capacitance measurement. For the fabrication of the specimens two types of capacitors were chosen: MLCC 1206 and MLCC 1812. Both were made from an X7R BaTiO3 ceramic dielectric material. The substrate consisted on a 1.6 mm thick FR 4 pcb stripe having the same width as the capacitors. The capacitors were soldered using SnPbAg2, SnAg0.3Cu0.7 and SnAg3.8Cu0.7 solder alloys. After testing all samples were metallographically prepared, to analyze the cracks within the ceramic body of the capacitor by light microscopy. The paper will present the results of these microscopic studies, with regard to the crack shape that was found in the microsections of the tested specimens. The dependence of crack shape on the employed capacitor geometry and on the used solder alloy will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wafer Level Through Polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturing ESTC 2018 TOC Calculation of local solder temperature profiles in reflow ovens Numerical and statistical investigation of weld formation in a novel two-dimensional copper-copper bonding process Nonconchoidal Fracture in Power Electronics Substrates due to Delamination in Baseplate Solder Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1