基于固态量子发射体的光纤耦合量子光源

L. Bremer, S. Rodt, S. Reitzenstein
{"title":"基于固态量子发射体的光纤耦合量子光源","authors":"L. Bremer, S. Rodt, S. Reitzenstein","doi":"10.1088/2633-4356/aca3f3","DOIUrl":null,"url":null,"abstract":"\n Photonic quantum technology is essentially based on the exchange of individual photons as information carriers. Therefore, the development of practical single-photon sources that emit single photons on-demand is a crucial contribution to advance this emerging technology and to promoting its first real-world applications. In the last two decades, a large number of quantum light sources based on solid state emitters have been developed on a laboratory scale. Corresponding structures today have almost ideal optical and quantum-optical properties. For practical applications, however, one crucial factor is usually missing, namely direct on-chip fiber coupling, which is essential, for example, for the direct integration of such quantum devices into fiber-based quantum networks. In fact, the development of fiber-coupled quantum light sources is still in its infancy, with very promising advances having been made in recent years. Against this background, this review article presents the current status of the de-velopment of fiber-coupled quantum light sources based on solid state quantum emitters and discusses challenges, technological solutions and future prospects. Among other things, the numerical optimiza-tion of the fiber coupling efficiency, coupling methods, and important realizations of such quantum devices are presented and compared. Overall, this article provides an important overview of the state of the art and the performance parameters of fiber-coupled quantum light sources that have been achieved so far. It is aimed equally at experts in the scientific field and at students and newcomers who want to get an overview of the current developments.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fiber-coupled quantum light sources based on solid-state quantum emitters\",\"authors\":\"L. Bremer, S. Rodt, S. Reitzenstein\",\"doi\":\"10.1088/2633-4356/aca3f3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Photonic quantum technology is essentially based on the exchange of individual photons as information carriers. Therefore, the development of practical single-photon sources that emit single photons on-demand is a crucial contribution to advance this emerging technology and to promoting its first real-world applications. In the last two decades, a large number of quantum light sources based on solid state emitters have been developed on a laboratory scale. Corresponding structures today have almost ideal optical and quantum-optical properties. For practical applications, however, one crucial factor is usually missing, namely direct on-chip fiber coupling, which is essential, for example, for the direct integration of such quantum devices into fiber-based quantum networks. In fact, the development of fiber-coupled quantum light sources is still in its infancy, with very promising advances having been made in recent years. Against this background, this review article presents the current status of the de-velopment of fiber-coupled quantum light sources based on solid state quantum emitters and discusses challenges, technological solutions and future prospects. Among other things, the numerical optimiza-tion of the fiber coupling efficiency, coupling methods, and important realizations of such quantum devices are presented and compared. Overall, this article provides an important overview of the state of the art and the performance parameters of fiber-coupled quantum light sources that have been achieved so far. It is aimed equally at experts in the scientific field and at students and newcomers who want to get an overview of the current developments.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/aca3f3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/aca3f3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

光子量子技术本质上是基于单个光子作为信息载体的交换。因此,开发按需发射单光子的实用单光子源对推进这一新兴技术和促进其首次实际应用至关重要。在过去的二十年里,大量基于固体发射体的量子光源在实验室规模上得到了发展。今天相应的结构具有几乎理想的光学和量子光学性质。然而,对于实际应用,通常缺少一个关键因素,即直接片上光纤耦合,这对于将此类量子设备直接集成到基于光纤的量子网络中至关重要。事实上,光纤耦合量子光源的发展仍处于起步阶段,近年来已经取得了非常有希望的进展。在此背景下,本文综述了基于固态量子发射器的光纤耦合量子光源的发展现状,并讨论了面临的挑战、技术解决方案和未来展望。其中,对光纤耦合效率的数值优化、耦合方法和量子器件的重要实现进行了介绍和比较。总的来说,本文提供了一个重要的概述的艺术状态和性能参数的光纤耦合量子光源已经实现到目前为止。它的目标同样是在科学领域的专家和学生和新来者谁想要得到一个概述当前的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fiber-coupled quantum light sources based on solid-state quantum emitters
Photonic quantum technology is essentially based on the exchange of individual photons as information carriers. Therefore, the development of practical single-photon sources that emit single photons on-demand is a crucial contribution to advance this emerging technology and to promoting its first real-world applications. In the last two decades, a large number of quantum light sources based on solid state emitters have been developed on a laboratory scale. Corresponding structures today have almost ideal optical and quantum-optical properties. For practical applications, however, one crucial factor is usually missing, namely direct on-chip fiber coupling, which is essential, for example, for the direct integration of such quantum devices into fiber-based quantum networks. In fact, the development of fiber-coupled quantum light sources is still in its infancy, with very promising advances having been made in recent years. Against this background, this review article presents the current status of the de-velopment of fiber-coupled quantum light sources based on solid state quantum emitters and discusses challenges, technological solutions and future prospects. Among other things, the numerical optimiza-tion of the fiber coupling efficiency, coupling methods, and important realizations of such quantum devices are presented and compared. Overall, this article provides an important overview of the state of the art and the performance parameters of fiber-coupled quantum light sources that have been achieved so far. It is aimed equally at experts in the scientific field and at students and newcomers who want to get an overview of the current developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1