欧洲索赔约为XVA

Fabio Antonelli, A. Ramponi, S. Scarlatti
{"title":"欧洲索赔约为XVA","authors":"Fabio Antonelli, A. Ramponi, S. Scarlatti","doi":"10.2139/ssrn.3652443","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing the Value Adjustment of European contingent claims when default of either party is considered, possibly including also funding and collateralization requirements. As shown in Brigo et al. (\\cite{BLPS}, \\cite{BFP}), this leads to a more articulate variety of Value Adjustments ({XVA}) that introduce some nonlinear features. When exploiting a reduced-form approach for the default times, the adjusted price can be characterized as the solution to a possibly nonlinear Backward Stochastic Differential Equation (BSDE). The expectation representing the solution of the BSDE is usually quite hard to compute even in a Markovian setting, and one might resort either to the discretization of the Partial Differential Equation characterizing it or to Monte Carlo Simulations. Both choices are computationally very expensive and in this paper we suggest an approximation method based on an appropriate change of numeraire and on a Taylor's polynomial expansion when intensities are represented by means of affine processes correlated with the asset's price. The numerical discussion at the end of this work shows that, at least in the case of the CIR intensity model, even the simple first-order approximation has a remarkable computational efficiency.","PeriodicalId":306152,"journal":{"name":"Risk Management eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate XVA for European Claims\",\"authors\":\"Fabio Antonelli, A. Ramponi, S. Scarlatti\",\"doi\":\"10.2139/ssrn.3652443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing the Value Adjustment of European contingent claims when default of either party is considered, possibly including also funding and collateralization requirements. As shown in Brigo et al. (\\\\cite{BLPS}, \\\\cite{BFP}), this leads to a more articulate variety of Value Adjustments ({XVA}) that introduce some nonlinear features. When exploiting a reduced-form approach for the default times, the adjusted price can be characterized as the solution to a possibly nonlinear Backward Stochastic Differential Equation (BSDE). The expectation representing the solution of the BSDE is usually quite hard to compute even in a Markovian setting, and one might resort either to the discretization of the Partial Differential Equation characterizing it or to Monte Carlo Simulations. Both choices are computationally very expensive and in this paper we suggest an approximation method based on an appropriate change of numeraire and on a Taylor's polynomial expansion when intensities are represented by means of affine processes correlated with the asset's price. The numerical discussion at the end of this work shows that, at least in the case of the CIR intensity model, even the simple first-order approximation has a remarkable computational efficiency.\",\"PeriodicalId\":306152,\"journal\":{\"name\":\"Risk Management eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3652443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3652443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在考虑任何一方违约时计算欧洲或有债权价值调整的问题,可能还包括资金和抵押要求。如Brigo等人(\cite{BLPS}, \cite{BFP})所示,这会导致引入一些非线性特征的更清晰的各种值调整{(XVA)}。当利用默认时间的简化方法时,调整后的价格可以表征为可能是非线性的后向随机微分方程(BSDE)的解。表示BSDE解的期望通常很难计算,即使在马尔可夫环境中也是如此,人们可能会求助于描述它的偏微分方程的离散化或蒙特卡罗模拟。这两种选择在计算上都是非常昂贵的,在本文中,我们提出了一种近似方法,该方法基于适当的数值变化和泰勒多项式展开,当强度由与资产价格相关的仿射过程表示时。本文最后的数值讨论表明,至少在CIR强度模型的情况下,即使是简单的一阶近似也具有显着的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate XVA for European Claims
We consider the problem of computing the Value Adjustment of European contingent claims when default of either party is considered, possibly including also funding and collateralization requirements. As shown in Brigo et al. (\cite{BLPS}, \cite{BFP}), this leads to a more articulate variety of Value Adjustments ({XVA}) that introduce some nonlinear features. When exploiting a reduced-form approach for the default times, the adjusted price can be characterized as the solution to a possibly nonlinear Backward Stochastic Differential Equation (BSDE). The expectation representing the solution of the BSDE is usually quite hard to compute even in a Markovian setting, and one might resort either to the discretization of the Partial Differential Equation characterizing it or to Monte Carlo Simulations. Both choices are computationally very expensive and in this paper we suggest an approximation method based on an appropriate change of numeraire and on a Taylor's polynomial expansion when intensities are represented by means of affine processes correlated with the asset's price. The numerical discussion at the end of this work shows that, at least in the case of the CIR intensity model, even the simple first-order approximation has a remarkable computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Institutional Investors on Real Estate Risk Delta-Gamma Component VaR: Non-Linear Risk Decomposition for any Type of Funds Testing Factor Models in the Cross-Section Quantum Circuit Learning to Compute Option Prices and Their Sensitivities Put Option and Risk Level of Asset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1