具有动量增益的腿式机构设计

Brandon J. DeHart, D. Kulić
{"title":"具有动量增益的腿式机构设计","authors":"Brandon J. DeHart, D. Kulić","doi":"10.1109/HUMANOIDS.2017.8246932","DOIUrl":null,"url":null,"abstract":"There are two main goals for any mobile, bipedal system: locomotion and balance. These behaviors both require the biped to effectively move its center of mass (COM). In this work, we define an optimization framework which can be used to design a biped that maximizes its ability to move its COM, without having to define an associated controller or trajectory. We use angular momentum gain in our objective function, a measure of how efficiently a system can move its COM based on its physical properties. As a comparison, we also optimize the model using a cost of transport-based objective function over a set of trajectories and show that it provides similar results. However, the cost of transport calculation requires slow hybrid dynamics equations and hand-designed trajectories, whereas the angular momentum gain calculation requires only the joint space inertia matrix at each configuration of interest.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Legged mechanism design with momentum gains\",\"authors\":\"Brandon J. DeHart, D. Kulić\",\"doi\":\"10.1109/HUMANOIDS.2017.8246932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two main goals for any mobile, bipedal system: locomotion and balance. These behaviors both require the biped to effectively move its center of mass (COM). In this work, we define an optimization framework which can be used to design a biped that maximizes its ability to move its COM, without having to define an associated controller or trajectory. We use angular momentum gain in our objective function, a measure of how efficiently a system can move its COM based on its physical properties. As a comparison, we also optimize the model using a cost of transport-based objective function over a set of trajectories and show that it provides similar results. However, the cost of transport calculation requires slow hybrid dynamics equations and hand-designed trajectories, whereas the angular momentum gain calculation requires only the joint space inertia matrix at each configuration of interest.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

任何移动的双足系统都有两个主要目标:运动和平衡。这些行为都需要双足动物有效地移动其质心。在这项工作中,我们定义了一个优化框架,该框架可用于设计两足动物,使其移动COM的能力最大化,而无需定义相关的控制器或轨迹。我们在我们的目标函数中使用角动量增益,这是一个衡量系统基于其物理特性移动其COM的效率的指标。作为比较,我们还在一组轨迹上使用基于运输成本的目标函数来优化模型,并表明它提供了类似的结果。然而,运输成本的计算需要缓慢的混合动力学方程和手工设计的轨迹,而角动量增益的计算只需要在每个感兴趣的构型上的关节空间惯性矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Legged mechanism design with momentum gains
There are two main goals for any mobile, bipedal system: locomotion and balance. These behaviors both require the biped to effectively move its center of mass (COM). In this work, we define an optimization framework which can be used to design a biped that maximizes its ability to move its COM, without having to define an associated controller or trajectory. We use angular momentum gain in our objective function, a measure of how efficiently a system can move its COM based on its physical properties. As a comparison, we also optimize the model using a cost of transport-based objective function over a set of trajectories and show that it provides similar results. However, the cost of transport calculation requires slow hybrid dynamics equations and hand-designed trajectories, whereas the angular momentum gain calculation requires only the joint space inertia matrix at each configuration of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1