从训练神经网络中提取知识:立场文件

A.S. d'Avila Garcez, K. Broda, D. Gabbay, Alberto F. de Souza
{"title":"从训练神经网络中提取知识:立场文件","authors":"A.S. d'Avila Garcez, K. Broda, D. Gabbay, Alberto F. de Souza","doi":"10.1109/ICONIP.1999.845678","DOIUrl":null,"url":null,"abstract":"It is commonly accepted that one of the main drawbacks of neural networks, the lack of explanation, may be ameliorated by the so called rule extraction methods. We argue that neural networks encode nonmonotonicity, i.e., they jump to conclusions that might be withdrawn when new information is available. The authors present an extraction method that complies with the above perspective. We define a partial ordering on the network's input vector set, and use it to confine the search space for the extraction of rules by querying the network. We then define a number of simplification metarules, show that the extraction is sound and present the results of applying the extraction algorithm to the Monks' Problems (S.B. Thrun et al., 1991).","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge extraction from trained neural networks: a position paper\",\"authors\":\"A.S. d'Avila Garcez, K. Broda, D. Gabbay, Alberto F. de Souza\",\"doi\":\"10.1109/ICONIP.1999.845678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is commonly accepted that one of the main drawbacks of neural networks, the lack of explanation, may be ameliorated by the so called rule extraction methods. We argue that neural networks encode nonmonotonicity, i.e., they jump to conclusions that might be withdrawn when new information is available. The authors present an extraction method that complies with the above perspective. We define a partial ordering on the network's input vector set, and use it to confine the search space for the extraction of rules by querying the network. We then define a number of simplification metarules, show that the extraction is sound and present the results of applying the extraction algorithm to the Monks' Problems (S.B. Thrun et al., 1991).\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.845678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.845678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们普遍认为,神经网络的主要缺点之一,即缺乏解释,可以通过所谓的规则提取方法来改善。我们认为,神经网络编码非单调性,也就是说,当有新信息可用时,它们可能会得出可能被撤回的结论。作者提出了一种符合上述观点的提取方法。我们在网络的输入向量集上定义了一个偏序,并利用它来限制查询网络提取规则的搜索空间。然后,我们定义了一些简化元规则,表明提取是合理的,并展示了将提取算法应用于Monks问题的结果(S.B. Thrun等人,1991)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge extraction from trained neural networks: a position paper
It is commonly accepted that one of the main drawbacks of neural networks, the lack of explanation, may be ameliorated by the so called rule extraction methods. We argue that neural networks encode nonmonotonicity, i.e., they jump to conclusions that might be withdrawn when new information is available. The authors present an extraction method that complies with the above perspective. We define a partial ordering on the network's input vector set, and use it to confine the search space for the extraction of rules by querying the network. We then define a number of simplification metarules, show that the extraction is sound and present the results of applying the extraction algorithm to the Monks' Problems (S.B. Thrun et al., 1991).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1