分布式语音识别中基于PCA和重构误差方差的语音增强

Amin Haji Abolhassani, S. Selouani, D. O'Shaughnessy
{"title":"分布式语音识别中基于PCA和重构误差方差的语音增强","authors":"Amin Haji Abolhassani, S. Selouani, D. O'Shaughnessy","doi":"10.1109/ASRU.2007.4430077","DOIUrl":null,"url":null,"abstract":"We present in this paper a signal subspace-based approach for enhancing a noisy signal. This algorithm is based on a principal component analysis (PCA) in which the optimal sub-space selection is provided by a variance of the reconstruction error (VRE) criterion. This choice overcomes many limitations encountered with other selection criteria, like over-estimation of the signal subspace or the need for empirical parameters. We have also extended our subspace algorithm to take into account the case of colored and babble noise. The performance evaluation, which is made on the Aurora database, measures improvements in the distributed speech recognition of noisy signals corrupted by different types of additive noises. Our algorithm succeeds in improving the recognition of noisy speech in all noisy conditions.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"163 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Speech enhancement using PCA and variance of the reconstruction error in distributed speech recognition\",\"authors\":\"Amin Haji Abolhassani, S. Selouani, D. O'Shaughnessy\",\"doi\":\"10.1109/ASRU.2007.4430077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present in this paper a signal subspace-based approach for enhancing a noisy signal. This algorithm is based on a principal component analysis (PCA) in which the optimal sub-space selection is provided by a variance of the reconstruction error (VRE) criterion. This choice overcomes many limitations encountered with other selection criteria, like over-estimation of the signal subspace or the need for empirical parameters. We have also extended our subspace algorithm to take into account the case of colored and babble noise. The performance evaluation, which is made on the Aurora database, measures improvements in the distributed speech recognition of noisy signals corrupted by different types of additive noises. Our algorithm succeeds in improving the recognition of noisy speech in all noisy conditions.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"163 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于信号子空间的增强噪声信号的方法。该算法基于主成分分析(PCA),其中最优子空间选择是由重构误差(VRE)标准的方差提供的。这种选择克服了其他选择标准遇到的许多限制,如对信号子空间的过度估计或对经验参数的需要。我们还扩展了子空间算法,以考虑有色噪声和杂音的情况。在Aurora数据库上进行了性能评估,测量了不同类型的加性噪声破坏的分布式语音识别信号的改进。我们的算法成功地提高了在所有噪声条件下对噪声语音的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speech enhancement using PCA and variance of the reconstruction error in distributed speech recognition
We present in this paper a signal subspace-based approach for enhancing a noisy signal. This algorithm is based on a principal component analysis (PCA) in which the optimal sub-space selection is provided by a variance of the reconstruction error (VRE) criterion. This choice overcomes many limitations encountered with other selection criteria, like over-estimation of the signal subspace or the need for empirical parameters. We have also extended our subspace algorithm to take into account the case of colored and babble noise. The performance evaluation, which is made on the Aurora database, measures improvements in the distributed speech recognition of noisy signals corrupted by different types of additive noises. Our algorithm succeeds in improving the recognition of noisy speech in all noisy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1