{"title":"基于dfig的风电系统定子无功和有功FSMC控制中NPWM与NSVPWM策略的比较研究","authors":"H. Benbouhenni, Z. Boudjema, A. Belaidi","doi":"10.11591/ijape.v9.i2.pp159-172","DOIUrl":null,"url":null,"abstract":"Received May 28, 2019 Revised Jan 22, 2020 Accepted Mar 10, 2020 In this work, we present a comparative study between neural space vector pulse width modulation (NSVPWM) and neural pulse width modulation (NPWM) technique in fuzzy-sliding mode control (FSMC) of stator active and stator reactive power control of a doubly fed induction generator (DFIG) for wind energy conversion systems (WECSs). Two strategies approach using FSMC-NSVPWM and FSMC-NPWM are proposed and compared. The validity of the proposed strategies is verified by simulation tests of a DFIG (1.5MW). The reactive power, electromagnetic torque, rotor current and stator active power is determined and compared in the above strategies. The obtained results showed that the proposed FSMC with NSVPWM strategy has stator reactive and active power with low powers ripples and low rotor current harmonic distortion than NPWM strategy.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparison study between NPWM and NSVPWM strategy in FSMC control of stator reactive and active powers control of a DFIG-based wind turbine system\",\"authors\":\"H. Benbouhenni, Z. Boudjema, A. Belaidi\",\"doi\":\"10.11591/ijape.v9.i2.pp159-172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received May 28, 2019 Revised Jan 22, 2020 Accepted Mar 10, 2020 In this work, we present a comparative study between neural space vector pulse width modulation (NSVPWM) and neural pulse width modulation (NPWM) technique in fuzzy-sliding mode control (FSMC) of stator active and stator reactive power control of a doubly fed induction generator (DFIG) for wind energy conversion systems (WECSs). Two strategies approach using FSMC-NSVPWM and FSMC-NPWM are proposed and compared. The validity of the proposed strategies is verified by simulation tests of a DFIG (1.5MW). The reactive power, electromagnetic torque, rotor current and stator active power is determined and compared in the above strategies. The obtained results showed that the proposed FSMC with NSVPWM strategy has stator reactive and active power with low powers ripples and low rotor current harmonic distortion than NPWM strategy.\",\"PeriodicalId\":280098,\"journal\":{\"name\":\"International Journal of Applied Power Engineering\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v9.i2.pp159-172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v9.i2.pp159-172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison study between NPWM and NSVPWM strategy in FSMC control of stator reactive and active powers control of a DFIG-based wind turbine system
Received May 28, 2019 Revised Jan 22, 2020 Accepted Mar 10, 2020 In this work, we present a comparative study between neural space vector pulse width modulation (NSVPWM) and neural pulse width modulation (NPWM) technique in fuzzy-sliding mode control (FSMC) of stator active and stator reactive power control of a doubly fed induction generator (DFIG) for wind energy conversion systems (WECSs). Two strategies approach using FSMC-NSVPWM and FSMC-NPWM are proposed and compared. The validity of the proposed strategies is verified by simulation tests of a DFIG (1.5MW). The reactive power, electromagnetic torque, rotor current and stator active power is determined and compared in the above strategies. The obtained results showed that the proposed FSMC with NSVPWM strategy has stator reactive and active power with low powers ripples and low rotor current harmonic distortion than NPWM strategy.