{"title":"离散事件仿真中的Kriging元建模:概述","authors":"W. V. Beers","doi":"10.1109/WSC.2005.1574252","DOIUrl":null,"url":null,"abstract":"Many simulation experiments require considerable computer time, so interpolation is needed for sensitivity analysis and optimization. The interpolating functions are 'metamodels' (or 'response surfaces') of the underlying simulation models. For sensitivity analysis and optimization, simulationists use different interpolation techniques (e.g. low-order polynomial regression or neural nets). This paper, however, focuses on Kriging interpolation. In the 1950's, D. G. Krige developed this technique for the mining industry. Currently, Kriging interpolation is frequently applied in Computer Aided Engineering. In discrete-event simulation, however, Kriging has just started. This paper discusses Kriging for sensitivity analysis in simulation, including methods to select an experimental design for Kriging interpolation.","PeriodicalId":287132,"journal":{"name":"Online World Conference on Soft Computing in Industrial Applications","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Kriging metamodeling in discrete-event simulation: an overview\",\"authors\":\"W. V. Beers\",\"doi\":\"10.1109/WSC.2005.1574252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many simulation experiments require considerable computer time, so interpolation is needed for sensitivity analysis and optimization. The interpolating functions are 'metamodels' (or 'response surfaces') of the underlying simulation models. For sensitivity analysis and optimization, simulationists use different interpolation techniques (e.g. low-order polynomial regression or neural nets). This paper, however, focuses on Kriging interpolation. In the 1950's, D. G. Krige developed this technique for the mining industry. Currently, Kriging interpolation is frequently applied in Computer Aided Engineering. In discrete-event simulation, however, Kriging has just started. This paper discusses Kriging for sensitivity analysis in simulation, including methods to select an experimental design for Kriging interpolation.\",\"PeriodicalId\":287132,\"journal\":{\"name\":\"Online World Conference on Soft Computing in Industrial Applications\",\"volume\":\"599 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online World Conference on Soft Computing in Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2005.1574252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online World Conference on Soft Computing in Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2005.1574252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kriging metamodeling in discrete-event simulation: an overview
Many simulation experiments require considerable computer time, so interpolation is needed for sensitivity analysis and optimization. The interpolating functions are 'metamodels' (or 'response surfaces') of the underlying simulation models. For sensitivity analysis and optimization, simulationists use different interpolation techniques (e.g. low-order polynomial regression or neural nets). This paper, however, focuses on Kriging interpolation. In the 1950's, D. G. Krige developed this technique for the mining industry. Currently, Kriging interpolation is frequently applied in Computer Aided Engineering. In discrete-event simulation, however, Kriging has just started. This paper discusses Kriging for sensitivity analysis in simulation, including methods to select an experimental design for Kriging interpolation.