机器学习辅助固态电解质离子电导率预测的可视化分析

Hui Shao, J. Pu, Yanlin Zhu, Boyang Gao, Zhengguo Zhu, Yunbo Rao
{"title":"机器学习辅助固态电解质离子电导率预测的可视化分析","authors":"Hui Shao, J. Pu, Yanlin Zhu, Boyang Gao, Zhengguo Zhu, Yunbo Rao","doi":"10.1109/PacificVis52677.2021.00038","DOIUrl":null,"url":null,"abstract":"Lithium ion batteries (LIBs) are widely used as the important energy sources in our daily life such as mobile phones, electric vehicles, and drones etc. Due to the potential safety risks caused by liquid electrolytes, the experts have tried to replace liquid electrolytes with solid ones. However, it is very difficult to find suitable alternatives materials in traditional ways for its incredible high cost in searching. Machine learning (ML) based methods are currently introduced and used for material prediction. But there is rarely an assisting learning tools designed for domain experts for institutive performance comparison and analysis of ML model. In this case, we propose an interactive visualization system for experts to select suitable ML models, understand and explore the predication results comprehensively. Our system employs a multi-faceted visualization scheme designed to support analysis from the perspective of feature composition, data similarity, model performance, and results presentation. A case study with real experiments in lab has been taken by the expert and the results of confirmed the effectiveness and helpfulness of our system.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Visual Analysis on Machine Learning Assisted Prediction of Ionic Conductivity for Solid-State Electrolytes\",\"authors\":\"Hui Shao, J. Pu, Yanlin Zhu, Boyang Gao, Zhengguo Zhu, Yunbo Rao\",\"doi\":\"10.1109/PacificVis52677.2021.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium ion batteries (LIBs) are widely used as the important energy sources in our daily life such as mobile phones, electric vehicles, and drones etc. Due to the potential safety risks caused by liquid electrolytes, the experts have tried to replace liquid electrolytes with solid ones. However, it is very difficult to find suitable alternatives materials in traditional ways for its incredible high cost in searching. Machine learning (ML) based methods are currently introduced and used for material prediction. But there is rarely an assisting learning tools designed for domain experts for institutive performance comparison and analysis of ML model. In this case, we propose an interactive visualization system for experts to select suitable ML models, understand and explore the predication results comprehensively. Our system employs a multi-faceted visualization scheme designed to support analysis from the perspective of feature composition, data similarity, model performance, and results presentation. A case study with real experiments in lab has been taken by the expert and the results of confirmed the effectiveness and helpfulness of our system.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

锂离子电池作为手机、电动汽车、无人机等日常生活中的重要能源被广泛使用。由于液体电解质存在安全隐患,专家们尝试用固体电解质代替液体电解质。然而,传统方法很难找到合适的替代材料,其搜索成本高得令人难以置信。基于机器学习(ML)的方法目前被引入并用于材料预测。但是,很少有专门为领域专家设计的辅助学习工具,用于机器学习模型的制度性能比较和分析。在这种情况下,我们提出了一个交互式可视化系统,供专家选择合适的ML模型,全面理解和探索预测结果。我们的系统采用多方面的可视化方案,旨在支持从特征组成、数据相似度、模型性能和结果呈现的角度进行分析。专家在实验室进行了实例研究,结果证实了系统的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Analysis on Machine Learning Assisted Prediction of Ionic Conductivity for Solid-State Electrolytes
Lithium ion batteries (LIBs) are widely used as the important energy sources in our daily life such as mobile phones, electric vehicles, and drones etc. Due to the potential safety risks caused by liquid electrolytes, the experts have tried to replace liquid electrolytes with solid ones. However, it is very difficult to find suitable alternatives materials in traditional ways for its incredible high cost in searching. Machine learning (ML) based methods are currently introduced and used for material prediction. But there is rarely an assisting learning tools designed for domain experts for institutive performance comparison and analysis of ML model. In this case, we propose an interactive visualization system for experts to select suitable ML models, understand and explore the predication results comprehensively. Our system employs a multi-faceted visualization scheme designed to support analysis from the perspective of feature composition, data similarity, model performance, and results presentation. A case study with real experiments in lab has been taken by the expert and the results of confirmed the effectiveness and helpfulness of our system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1