重新审视相变存储器的哈希表设计

INFLOW '15 Pub Date : 2015-10-04 DOI:10.1145/2819001.2819002
Biplob K. Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, C. Ungureanu
{"title":"重新审视相变存储器的哈希表设计","authors":"Biplob K. Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, C. Ungureanu","doi":"10.1145/2819001.2819002","DOIUrl":null,"url":null,"abstract":"Phase Change Memory (PCM) is emerging as an attractive alternative to Dynamic Random Access Memory (DRAM) in building data-intensive computing systems. PCM offers read/write performance asymmetry that makes it necessary to revisit the design of in-memory applications.\n In this paper, we focus on in-memory hash tables, a family of data structures with wide applicability. We evaluate several popular hash-table designs to understand their performance under PCM. We find that for write-heavy workloads the designs that achieve best performance for PCMdiffer from the ones that are best for DRAM, and that designs achieving a high load factor also cause a high number of memory writes. Finally, we propose PFHT, a PCM-Friendly Hash Table which presents a cuckoo hashing variant that is tailored to PCM characteristics, and offers a better trade-off between performance, the amount of writes generated, and the expected load factor than any of the existing DRAM-based implementations.","PeriodicalId":293142,"journal":{"name":"INFLOW '15","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Revisiting hash table design for phase change memory\",\"authors\":\"Biplob K. Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, C. Ungureanu\",\"doi\":\"10.1145/2819001.2819002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase Change Memory (PCM) is emerging as an attractive alternative to Dynamic Random Access Memory (DRAM) in building data-intensive computing systems. PCM offers read/write performance asymmetry that makes it necessary to revisit the design of in-memory applications.\\n In this paper, we focus on in-memory hash tables, a family of data structures with wide applicability. We evaluate several popular hash-table designs to understand their performance under PCM. We find that for write-heavy workloads the designs that achieve best performance for PCMdiffer from the ones that are best for DRAM, and that designs achieving a high load factor also cause a high number of memory writes. Finally, we propose PFHT, a PCM-Friendly Hash Table which presents a cuckoo hashing variant that is tailored to PCM characteristics, and offers a better trade-off between performance, the amount of writes generated, and the expected load factor than any of the existing DRAM-based implementations.\",\"PeriodicalId\":293142,\"journal\":{\"name\":\"INFLOW '15\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFLOW '15\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2819001.2819002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFLOW '15","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2819001.2819002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

相变存储器(PCM)作为动态随机存取存储器(DRAM)的一种有吸引力的替代方案,在构建数据密集型计算系统中崭露头角。PCM提供了读/写性能不对称,这使得有必要重新考虑内存应用程序的设计。在本文中,我们关注内存哈希表,这是一种具有广泛适用性的数据结构。我们评估了几种流行的哈希表设计,以了解它们在PCM下的性能。我们发现,对于写量大的工作负载,实现pcm最佳性能的设计不同于实现DRAM最佳性能的设计,并且实现高负载因子的设计也会导致大量内存写入。最后,我们提出PFHT,这是一种PCM友好哈希表,它提供了一种针对PCM特性量身定制的杜鹃哈希变体,与任何现有的基于dram的实现相比,它在性能、生成的写入量和预期负载因子之间提供了更好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting hash table design for phase change memory
Phase Change Memory (PCM) is emerging as an attractive alternative to Dynamic Random Access Memory (DRAM) in building data-intensive computing systems. PCM offers read/write performance asymmetry that makes it necessary to revisit the design of in-memory applications. In this paper, we focus on in-memory hash tables, a family of data structures with wide applicability. We evaluate several popular hash-table designs to understand their performance under PCM. We find that for write-heavy workloads the designs that achieve best performance for PCMdiffer from the ones that are best for DRAM, and that designs achieving a high load factor also cause a high number of memory writes. Finally, we propose PFHT, a PCM-Friendly Hash Table which presents a cuckoo hashing variant that is tailored to PCM characteristics, and offers a better trade-off between performance, the amount of writes generated, and the expected load factor than any of the existing DRAM-based implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting NVM in large-scale graph analytics Mjölnir: collecting trash in a demanding new world Revisiting hash table design for phase change memory Towards software defined persistent memory: rethinking software support for heterogenous memory architectures Androtrace: framework for tracing and analyzing IOs on Android
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1