介绍了马尔可夫过程的概率函数理论在自动语音识别中的应用

S. Levinson, L. Rabiner, M. Sondhi
{"title":"介绍了马尔可夫过程的概率函数理论在自动语音识别中的应用","authors":"S. Levinson, L. Rabiner, M. Sondhi","doi":"10.1002/J.1538-7305.1983.TB03114.X","DOIUrl":null,"url":null,"abstract":"In this paper we present several of the salient theoretical and practical issues associated with modeling a speech signal as a probabilistic function of a (hidden) Markov chain. First we give a concise review of the literature with emphasis on the Baum-Welch algorithm. This is followed by a detailed discussion of three issues not treated in the literature: alternatives to the Baum-Welch algorithm; critical facets of the implementation of the algorithms, with emphasis on their numerical properties; and behavior of Markov models on certain artificial but realistic problems. Special attention is given to a particular class of Markov models, which we call “left-to-right” models. This class of models is especially appropriate for isolated word recognition. The results of the application of these methods to an isolated word, speaker-independent speech recognition experiment are given in a companion paper.","PeriodicalId":447574,"journal":{"name":"The Bell System Technical Journal","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1090","resultStr":"{\"title\":\"An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition\",\"authors\":\"S. Levinson, L. Rabiner, M. Sondhi\",\"doi\":\"10.1002/J.1538-7305.1983.TB03114.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present several of the salient theoretical and practical issues associated with modeling a speech signal as a probabilistic function of a (hidden) Markov chain. First we give a concise review of the literature with emphasis on the Baum-Welch algorithm. This is followed by a detailed discussion of three issues not treated in the literature: alternatives to the Baum-Welch algorithm; critical facets of the implementation of the algorithms, with emphasis on their numerical properties; and behavior of Markov models on certain artificial but realistic problems. Special attention is given to a particular class of Markov models, which we call “left-to-right” models. This class of models is especially appropriate for isolated word recognition. The results of the application of these methods to an isolated word, speaker-independent speech recognition experiment are given in a companion paper.\",\"PeriodicalId\":447574,\"journal\":{\"name\":\"The Bell System Technical Journal\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1090\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bell System Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/J.1538-7305.1983.TB03114.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bell System Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/J.1538-7305.1983.TB03114.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1090

摘要

在本文中,我们提出了与将语音信号建模为(隐藏)马尔可夫链的概率函数相关的几个突出的理论和实践问题。首先,我们给出了一个简明的文献回顾,重点是鲍姆-韦尔奇算法。接下来是对文献中未处理的三个问题的详细讨论:鲍姆-韦尔奇算法的替代品;算法实现的关键方面,重点是它们的数值特性;以及马尔可夫模型在某些人工但现实问题上的行为。特别注意的是一类特殊的马尔可夫模型,我们称之为“从左到右”模型。这类模型特别适用于孤立词识别。文中给出了这些方法在一个孤立词、不依赖说话人的语音识别实验中的应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition
In this paper we present several of the salient theoretical and practical issues associated with modeling a speech signal as a probabilistic function of a (hidden) Markov chain. First we give a concise review of the literature with emphasis on the Baum-Welch algorithm. This is followed by a detailed discussion of three issues not treated in the literature: alternatives to the Baum-Welch algorithm; critical facets of the implementation of the algorithms, with emphasis on their numerical properties; and behavior of Markov models on certain artificial but realistic problems. Special attention is given to a particular class of Markov models, which we call “left-to-right” models. This class of models is especially appropriate for isolated word recognition. The results of the application of these methods to an isolated word, speaker-independent speech recognition experiment are given in a companion paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acronyms and abbreviations Acronyms and abbreviations Time-Compression Multiplexing (TCM) of three broadcast-quality TV signals on a satellite transponder Theory of reflection from antireflection coatings Equivalent queueing networks and their use in approximate equilibrium analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1