慢时间宇宙学解决双红移悖论

Zahid Zakir
{"title":"慢时间宇宙学解决双红移悖论","authors":"Zahid Zakir","doi":"10.9751/qgph.1-008.7160","DOIUrl":null,"url":null,"abstract":"In static space, the redshift of photons from the receding sources is related by the Doppler effect. In the expanding space, the sources in our rest frame emit without the Doppler redshift, but along the path wavelengths of photons will experience a redshift due to stretching. Photons from the comoving the expansion sources are emitted with Doppler redshifts in our rest frame, and along the path they acquire stretching redshift also, and thus their redshift turns out to be doubled. This is clear for nearby sources, where there is both stretching and the Doppler redshifts, and only the quadratic Doppler effect will be added for distant sources. A similar doubling occurred with the deflection angle of the rays w.r.t. the Newtonian one due to the curvature of space. This double redshift paradox in expanding space is unsolvable in Friedmann's models with a constant rate of proper times. It is shown that the models of slowing time cosmology (STC) solve this paradox. The observed redshifts contain the contribution of only one of the two effects, and this indicates the presence of a third effect with a violetshift, which compensates the contribution of one of the redshifts. In STC, proper times rate in the past were faster and photons were emitted with an initial violetshift, compensated along the path by the stretching redshift. The observed redshift is then associated only with the Doppler effect, in addition the visible luminosities become dimmer due to relativistic aberration. Observations already in the linear part of the distance dependence of redshifts reject the models with Friedmann’s metric, leading to double redshift, and agree only with the STC. The basic relations of STC are presented, including the “distance modulus-redshift” relation describing observational data without dark energy. A modified picture of evolution in early epochs and the CMB properties are discussed. In particular, in STC the light speed in the past was faster and this solves the cosmological problems of the previous models (homogeneity, horizon, flatness, etc.).","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slowing time cosmology solving the double redshift paradox\",\"authors\":\"Zahid Zakir\",\"doi\":\"10.9751/qgph.1-008.7160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In static space, the redshift of photons from the receding sources is related by the Doppler effect. In the expanding space, the sources in our rest frame emit without the Doppler redshift, but along the path wavelengths of photons will experience a redshift due to stretching. Photons from the comoving the expansion sources are emitted with Doppler redshifts in our rest frame, and along the path they acquire stretching redshift also, and thus their redshift turns out to be doubled. This is clear for nearby sources, where there is both stretching and the Doppler redshifts, and only the quadratic Doppler effect will be added for distant sources. A similar doubling occurred with the deflection angle of the rays w.r.t. the Newtonian one due to the curvature of space. This double redshift paradox in expanding space is unsolvable in Friedmann's models with a constant rate of proper times. It is shown that the models of slowing time cosmology (STC) solve this paradox. The observed redshifts contain the contribution of only one of the two effects, and this indicates the presence of a third effect with a violetshift, which compensates the contribution of one of the redshifts. In STC, proper times rate in the past were faster and photons were emitted with an initial violetshift, compensated along the path by the stretching redshift. The observed redshift is then associated only with the Doppler effect, in addition the visible luminosities become dimmer due to relativistic aberration. Observations already in the linear part of the distance dependence of redshifts reject the models with Friedmann’s metric, leading to double redshift, and agree only with the STC. The basic relations of STC are presented, including the “distance modulus-redshift” relation describing observational data without dark energy. A modified picture of evolution in early epochs and the CMB properties are discussed. In particular, in STC the light speed in the past was faster and this solves the cosmological problems of the previous models (homogeneity, horizon, flatness, etc.).\",\"PeriodicalId\":294020,\"journal\":{\"name\":\"QUANTUM AND GRAVITATIONAL PHYSICS\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"QUANTUM AND GRAVITATIONAL PHYSICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9751/qgph.1-008.7160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"QUANTUM AND GRAVITATIONAL PHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9751/qgph.1-008.7160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在静态空间中,来自后退源的光子的红移与多普勒效应有关。在膨胀的空间中,我们静止坐标系中的光源发射没有多普勒红移,但沿着光子的路径波长将由于拉伸而经历红移。来自运动膨胀源的光子在我们的静止坐标系中以多普勒红移发射,并且沿着路径它们也获得拉伸红移,因此它们的红移被证明是加倍的。对于附近的源,这是很明显的,那里有拉伸和多普勒红移,只有二次多普勒效应将被添加到远处的源。由于空间的曲率,射线的偏转角度与牛顿的偏转角度相比也发生了类似的加倍。膨胀空间中的这种双红移悖论在具有恒定固有时速率的弗里德曼模型中是无法解决的。研究表明,慢时间宇宙学(STC)模型解决了这个悖论。观测到的红移只包含两种效应中的一种,这表明存在第三种效应,即紫移,它补偿了其中一种红移的贡献。在STC中,过去的固有时速率更快,光子以初始紫移发射,沿着路径被拉伸的红移补偿。观测到的红移只与多普勒效应有关,此外,由于相对论性像差,可见光度变得更暗。已经在红移距离依赖的线性部分的观测拒绝了具有弗里德曼度规的模型,导致双红移,并且只与STC一致。给出了STC的基本关系,包括描述无暗能量观测数据的“距离模量-红移”关系。讨论了早期演化的修正图像和CMB的性质。特别是在STC中,过去的光速更快,这解决了之前模型的宇宙学问题(均匀性、视界、平坦性等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slowing time cosmology solving the double redshift paradox
In static space, the redshift of photons from the receding sources is related by the Doppler effect. In the expanding space, the sources in our rest frame emit without the Doppler redshift, but along the path wavelengths of photons will experience a redshift due to stretching. Photons from the comoving the expansion sources are emitted with Doppler redshifts in our rest frame, and along the path they acquire stretching redshift also, and thus their redshift turns out to be doubled. This is clear for nearby sources, where there is both stretching and the Doppler redshifts, and only the quadratic Doppler effect will be added for distant sources. A similar doubling occurred with the deflection angle of the rays w.r.t. the Newtonian one due to the curvature of space. This double redshift paradox in expanding space is unsolvable in Friedmann's models with a constant rate of proper times. It is shown that the models of slowing time cosmology (STC) solve this paradox. The observed redshifts contain the contribution of only one of the two effects, and this indicates the presence of a third effect with a violetshift, which compensates the contribution of one of the redshifts. In STC, proper times rate in the past were faster and photons were emitted with an initial violetshift, compensated along the path by the stretching redshift. The observed redshift is then associated only with the Doppler effect, in addition the visible luminosities become dimmer due to relativistic aberration. Observations already in the linear part of the distance dependence of redshifts reject the models with Friedmann’s metric, leading to double redshift, and agree only with the STC. The basic relations of STC are presented, including the “distance modulus-redshift” relation describing observational data without dark energy. A modified picture of evolution in early epochs and the CMB properties are discussed. In particular, in STC the light speed in the past was faster and this solves the cosmological problems of the previous models (homogeneity, horizon, flatness, etc.).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-symmetric quantization of relativistic fields. 2. Electroweak theory. Observable effects of TSQ Time-symmetric quantization of relativistic fields. 1. Complex fields, massless gauge fields and gravitons Metrics with irreducible mass leading to a correct parameter dependence of gravitational effects around charged and rotating bodies On solutions of problems of 20th century physics and foundations of theoretical physics of 21st century Consistent quantization of systems with positive and negative energy states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1