{"title":"采用神经模糊网络的智能控制","authors":"M. Iskarous, K. Kawamura","doi":"10.1109/IROS.1995.525908","DOIUrl":null,"url":null,"abstract":"Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems. These problems include knowledge adaptation, learning, and expert knowledge incorporation. In this paper, a hybrid network that combines fuzzy inferencing and neural networks is used to model and to control complex dynamic systems. The network takes advantage of the learning algorithms developed for neural networks to generate the knowledge base used in fuzzy inferencing. The network as used to model and to control a robot arm with flexible pneumatic actuator. Comparison with a nonlinear control technique used for the robot joints is also presented.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Intelligent control using a neuro-fuzzy network\",\"authors\":\"M. Iskarous, K. Kawamura\",\"doi\":\"10.1109/IROS.1995.525908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems. These problems include knowledge adaptation, learning, and expert knowledge incorporation. In this paper, a hybrid network that combines fuzzy inferencing and neural networks is used to model and to control complex dynamic systems. The network takes advantage of the learning algorithms developed for neural networks to generate the knowledge base used in fuzzy inferencing. The network as used to model and to control a robot arm with flexible pneumatic actuator. Comparison with a nonlinear control technique used for the robot joints is also presented.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

智能控制技术的出现是为了克服传统控制方法在处理复杂现实系统时的一些不足。这些问题包括知识适应、学习和专家知识整合。本文将模糊推理和神经网络相结合的混合网络用于复杂动态系统的建模和控制。该网络利用为神经网络开发的学习算法来生成用于模糊推理的知识库。利用该网络对具有柔性气动执行器的机械臂进行建模和控制。并与用于机器人关节的非线性控制技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent control using a neuro-fuzzy network
Intelligent control techniques have emerged to overcome some deficiencies in conventional control methods in dealing with complex real-world systems. These problems include knowledge adaptation, learning, and expert knowledge incorporation. In this paper, a hybrid network that combines fuzzy inferencing and neural networks is used to model and to control complex dynamic systems. The network takes advantage of the learning algorithms developed for neural networks to generate the knowledge base used in fuzzy inferencing. The network as used to model and to control a robot arm with flexible pneumatic actuator. Comparison with a nonlinear control technique used for the robot joints is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The automatic detection and visual tracking of moving objects by eye-in-hand robotic systems Decentralized control of robots for dynamic coordination Cooperation between the human operator and the multi-agent robotic system: evaluation of agent monitoring methods for the human interface system Series elastic actuators Toward a seven axis haptic device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1