理解几何点云分割通过协方差

Jiaping Qin, Jing-yu Gong, Zhengyang Feng, Xin Tan, Lizhuang Ma
{"title":"理解几何点云分割通过协方差","authors":"Jiaping Qin, Jing-yu Gong, Zhengyang Feng, Xin Tan, Lizhuang Ma","doi":"10.1109/CISP-BMEI56279.2022.9979883","DOIUrl":null,"url":null,"abstract":"Geometry plays a vital role in 3D point cloud semantic segmentation since each category of object exhibits a specific geometric pattern. However, popular point cloud semantic segmentation methods ignore this property during feature aggregation. In this paper, we propose a novel Covariance-based Geometry Encoder (CGE) to learn latent geometry representation in point clouds and break this limitation. Specifically, we find that the classic covariance matrix can represent geometry implicitly in a point neighborhood, and we can learn geometry representation through simple multi-layer perceptrons to enhance the point features in a deep network. The proposed CGE module is generally applicable to any point-based network, while only requiring a little extra computing. Through extensive experiments, our method shows competitive performance on both indoor and outdoor benchmark datasets. Code will be publicly available.","PeriodicalId":198522,"journal":{"name":"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Geometry for Point Cloud Segmentation via Covariance\",\"authors\":\"Jiaping Qin, Jing-yu Gong, Zhengyang Feng, Xin Tan, Lizhuang Ma\",\"doi\":\"10.1109/CISP-BMEI56279.2022.9979883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometry plays a vital role in 3D point cloud semantic segmentation since each category of object exhibits a specific geometric pattern. However, popular point cloud semantic segmentation methods ignore this property during feature aggregation. In this paper, we propose a novel Covariance-based Geometry Encoder (CGE) to learn latent geometry representation in point clouds and break this limitation. Specifically, we find that the classic covariance matrix can represent geometry implicitly in a point neighborhood, and we can learn geometry representation through simple multi-layer perceptrons to enhance the point features in a deep network. The proposed CGE module is generally applicable to any point-based network, while only requiring a little extra computing. Through extensive experiments, our method shows competitive performance on both indoor and outdoor benchmark datasets. Code will be publicly available.\",\"PeriodicalId\":198522,\"journal\":{\"name\":\"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI56279.2022.9979883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI56279.2022.9979883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几何在三维点云语义分割中起着至关重要的作用,因为每一类物体都具有特定的几何模式。然而,常用的点云语义分割方法在特征聚合过程中忽略了这一特性。在本文中,我们提出了一种新的基于协方差的几何编码器(CGE)来学习点云中的潜在几何表示,并打破了这一限制。具体来说,我们发现经典的协方差矩阵可以隐式地表示点邻域的几何形状,并且我们可以通过简单的多层感知器来学习几何形状的表示,以增强深度网络中的点特征。所提出的CGE模块一般适用于任何基于点的网络,而只需要少量的额外计算。通过大量的实验,我们的方法在室内和室外基准数据集上都显示出具有竞争力的性能。代码将是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Geometry for Point Cloud Segmentation via Covariance
Geometry plays a vital role in 3D point cloud semantic segmentation since each category of object exhibits a specific geometric pattern. However, popular point cloud semantic segmentation methods ignore this property during feature aggregation. In this paper, we propose a novel Covariance-based Geometry Encoder (CGE) to learn latent geometry representation in point clouds and break this limitation. Specifically, we find that the classic covariance matrix can represent geometry implicitly in a point neighborhood, and we can learn geometry representation through simple multi-layer perceptrons to enhance the point features in a deep network. The proposed CGE module is generally applicable to any point-based network, while only requiring a little extra computing. Through extensive experiments, our method shows competitive performance on both indoor and outdoor benchmark datasets. Code will be publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Point Cloud Registration based Track Correlation Method An End-to-end Image Feature Representation Model of Pulmonary Nodules Vision-Guided Speaker Embedding Based Speech Separation Analysis and Simulation of Interference Effects on CSK Modulation Systems Sentiment Analysis Based On Deep Residual Bidirectional Gated Recurrent Unit Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1