来自RNA测序分析的肿瘤新抗原

Shaojun Tang, Suthee Rapisuwon, A. Wellstein, Subha Madhavan
{"title":"来自RNA测序分析的肿瘤新抗原","authors":"Shaojun Tang, Suthee Rapisuwon, A. Wellstein, Subha Madhavan","doi":"10.1145/3107411.3108210","DOIUrl":null,"url":null,"abstract":"Successful treatment of cancers with Immune Checkpoint Inhibitors (ICIs) has been associated with the mutational load of tumors. The biological rationale for this association between mutational load and ICI response is that neoantigens are generated by mutations in protein coding sequences that provide a steady flow of neoantigens to prime the immune system for the production of antigen-specific tumor-infiltrating lymphocytes (TILs). It is thought that mutant protein fragments will lead to altered MHC/peptide recognition and immune cell activation; ICI treatment enhances TIL functionality. Neoantigens are also relevant for an alternative, cell-based immunotherapeutic approach, i.e. Adoptive Cell Transfer (ACT). This concept of neoantigens derived from DNA mutations has led to an intense line of investigation to uncover relevant neoantigens. However, there has been mixed success with the current neoantigen discovery approach based on DNA mutation analysis of tumor samples by exome sequencing of genomic DNA. The current concept of neoantigens derived from mutant DNA ignores an alternative mechanism that can also generate neoantigens in cancers: Posttranscriptional editing of primary RNA. Here we propose to use full-length Single Molecule Real Time (SMRT) RNAseq to uncover pathologically edited mRNAs in cancers and complement the discovery of pathologic mRNA. We will discuss the respective algorithms and propose the combination with identification of candidate neoantigen peptides by mass spectrometry.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor Neoantigens Derived from RNA Sequencing Analysis\",\"authors\":\"Shaojun Tang, Suthee Rapisuwon, A. Wellstein, Subha Madhavan\",\"doi\":\"10.1145/3107411.3108210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successful treatment of cancers with Immune Checkpoint Inhibitors (ICIs) has been associated with the mutational load of tumors. The biological rationale for this association between mutational load and ICI response is that neoantigens are generated by mutations in protein coding sequences that provide a steady flow of neoantigens to prime the immune system for the production of antigen-specific tumor-infiltrating lymphocytes (TILs). It is thought that mutant protein fragments will lead to altered MHC/peptide recognition and immune cell activation; ICI treatment enhances TIL functionality. Neoantigens are also relevant for an alternative, cell-based immunotherapeutic approach, i.e. Adoptive Cell Transfer (ACT). This concept of neoantigens derived from DNA mutations has led to an intense line of investigation to uncover relevant neoantigens. However, there has been mixed success with the current neoantigen discovery approach based on DNA mutation analysis of tumor samples by exome sequencing of genomic DNA. The current concept of neoantigens derived from mutant DNA ignores an alternative mechanism that can also generate neoantigens in cancers: Posttranscriptional editing of primary RNA. Here we propose to use full-length Single Molecule Real Time (SMRT) RNAseq to uncover pathologically edited mRNAs in cancers and complement the discovery of pathologic mRNA. We will discuss the respective algorithms and propose the combination with identification of candidate neoantigen peptides by mass spectrometry.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用免疫检查点抑制剂(ICIs)成功治疗癌症与肿瘤的突变负荷有关。突变负荷和ICI反应之间的这种关联的生物学原理是,新抗原是由蛋白质编码序列的突变产生的,这些突变提供了稳定的新抗原流,为抗原特异性肿瘤浸润淋巴细胞(TILs)的产生启动免疫系统。据认为,突变蛋白片段将导致MHC/肽识别和免疫细胞活化的改变;ICI治疗可增强TIL功能。新抗原也与另一种基于细胞的免疫治疗方法相关,即过继细胞转移(ACT)。新抗原来源于DNA突变的这一概念导致了一种强烈的调查线,以发现相关的新抗原。然而,目前基于基因组DNA外显子组测序对肿瘤样本进行DNA突变分析的新抗原发现方法取得了不同程度的成功。目前的新抗原来源于突变DNA的概念忽略了另一种可以在癌症中产生新抗原的机制:初级RNA的转录后编辑。在这里,我们建议使用全长单分子实时(SMRT) RNAseq来发现癌症中病理编辑的mRNA,并补充病理mRNA的发现。我们将讨论各自的算法,并提出结合鉴定候选新抗原肽的质谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tumor Neoantigens Derived from RNA Sequencing Analysis
Successful treatment of cancers with Immune Checkpoint Inhibitors (ICIs) has been associated with the mutational load of tumors. The biological rationale for this association between mutational load and ICI response is that neoantigens are generated by mutations in protein coding sequences that provide a steady flow of neoantigens to prime the immune system for the production of antigen-specific tumor-infiltrating lymphocytes (TILs). It is thought that mutant protein fragments will lead to altered MHC/peptide recognition and immune cell activation; ICI treatment enhances TIL functionality. Neoantigens are also relevant for an alternative, cell-based immunotherapeutic approach, i.e. Adoptive Cell Transfer (ACT). This concept of neoantigens derived from DNA mutations has led to an intense line of investigation to uncover relevant neoantigens. However, there has been mixed success with the current neoantigen discovery approach based on DNA mutation analysis of tumor samples by exome sequencing of genomic DNA. The current concept of neoantigens derived from mutant DNA ignores an alternative mechanism that can also generate neoantigens in cancers: Posttranscriptional editing of primary RNA. Here we propose to use full-length Single Molecule Real Time (SMRT) RNAseq to uncover pathologically edited mRNAs in cancers and complement the discovery of pathologic mRNA. We will discuss the respective algorithms and propose the combination with identification of candidate neoantigen peptides by mass spectrometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1