期权价格包含基本面:来自美国天然气市场的证据

Sahar Emamzadehfard, Hamed Ghoddusi
{"title":"期权价格包含基本面:来自美国天然气市场的证据","authors":"Sahar Emamzadehfard, Hamed Ghoddusi","doi":"10.2139/ssrn.3026119","DOIUrl":null,"url":null,"abstract":"We examine the incremental power of a large set of key fundamental, financial, and macroeconomic variables for forecasting the volatility of natural gas futures prices. Among other results, we find that the option implied volatility (IV) significantly improves the performance of predictions regarding the future volatility of the natural gas market. We also identify several fundamental and macroeconomic variables (e.g., open interests, default premiums, and the return of the housing index) which are statistically-significant in a predictive regression even after including the option implied volatility. On the other hand, we do not find a substantial increase in the adjusted-R2 of the predictive regressions (including IVs) after adding significant fundamental variables. The small incremental predictive power of fundamental variables is interpreted as a sign of the efficiency of the options market. We also observe that the adjusted-R2s of predictive regressions are higher when the time-to-maturity of the futures contract increases. Our results can help users of natural gas volatility forecasts (e.g., producers, utility companies, and portfolio managers) make better informed and more efficient operational and financial decisions.","PeriodicalId":234456,"journal":{"name":"Politics & Energy eJournal","volume":"107 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option Prices Incorporate Fundamentals: Evidence from US Natural Gas Market\",\"authors\":\"Sahar Emamzadehfard, Hamed Ghoddusi\",\"doi\":\"10.2139/ssrn.3026119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the incremental power of a large set of key fundamental, financial, and macroeconomic variables for forecasting the volatility of natural gas futures prices. Among other results, we find that the option implied volatility (IV) significantly improves the performance of predictions regarding the future volatility of the natural gas market. We also identify several fundamental and macroeconomic variables (e.g., open interests, default premiums, and the return of the housing index) which are statistically-significant in a predictive regression even after including the option implied volatility. On the other hand, we do not find a substantial increase in the adjusted-R2 of the predictive regressions (including IVs) after adding significant fundamental variables. The small incremental predictive power of fundamental variables is interpreted as a sign of the efficiency of the options market. We also observe that the adjusted-R2s of predictive regressions are higher when the time-to-maturity of the futures contract increases. Our results can help users of natural gas volatility forecasts (e.g., producers, utility companies, and portfolio managers) make better informed and more efficient operational and financial decisions.\",\"PeriodicalId\":234456,\"journal\":{\"name\":\"Politics & Energy eJournal\",\"volume\":\"107 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Politics & Energy eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3026119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Politics & Energy eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3026119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了预测天然气期货价格波动的大量关键基础、金融和宏观经济变量的增量能力。在其他结果中,我们发现期权隐含波动率(IV)显著改善了对天然气市场未来波动率的预测。我们还确定了几个基本和宏观经济变量(例如,未平仓权益、违约溢价和住房指数的回报),即使在包括期权隐含波动率之后,这些变量在预测回归中也具有统计显著性。另一方面,在加入显著的基本变量后,我们没有发现预测回归(包括IVs)的调整后r2有实质性的增加。基本变量的小增量预测能力被解释为期权市场效率的标志。我们还观察到,随着期货合约到期日的增加,预测回归的调整后r2s更高。我们的研究结果可以帮助天然气波动率预测的用户(例如,生产商、公用事业公司和投资组合经理)做出更明智、更有效的运营和财务决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Option Prices Incorporate Fundamentals: Evidence from US Natural Gas Market
We examine the incremental power of a large set of key fundamental, financial, and macroeconomic variables for forecasting the volatility of natural gas futures prices. Among other results, we find that the option implied volatility (IV) significantly improves the performance of predictions regarding the future volatility of the natural gas market. We also identify several fundamental and macroeconomic variables (e.g., open interests, default premiums, and the return of the housing index) which are statistically-significant in a predictive regression even after including the option implied volatility. On the other hand, we do not find a substantial increase in the adjusted-R2 of the predictive regressions (including IVs) after adding significant fundamental variables. The small incremental predictive power of fundamental variables is interpreted as a sign of the efficiency of the options market. We also observe that the adjusted-R2s of predictive regressions are higher when the time-to-maturity of the futures contract increases. Our results can help users of natural gas volatility forecasts (e.g., producers, utility companies, and portfolio managers) make better informed and more efficient operational and financial decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attaining Net-Zero through a GHG-Economic Sector The Green Transition in Oil Dependent Economies in the MENA Region 'Turning off the Pumps, Breaking the Oil Addiction, and Greening the Desert' Case Study: A Non-Oil Future for Saudi Arabia and Algeria? Captured: Regulating to 1.5C through Tax, Section 45Q and Escaping from Regressive Pitfalls The Comparison of Regression Models and Artificial Neural Networks in Predicting Power Generation in a Thermal Coal Power Plant Evaluation of Artificial Lift Methods to Increase Oil Production from Depleting Oil Wells in Gulf of Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1