一种提高AlexNet面部表情识别性能的方法

Akhmad Sarif, D. Gunawan
{"title":"一种提高AlexNet面部表情识别性能的方法","authors":"Akhmad Sarif, D. Gunawan","doi":"10.1109/IAICT59002.2023.10205951","DOIUrl":null,"url":null,"abstract":"Facial Expression Recognition (FER) through digital images has undergone significant development in line with the development of computer vision technology and artificial intelligence. Facial expression recognition that has utilized deep learning shows promising results. By using deep learning, classifying millions of digital images can be easier and more accurate. However, misclassification of facial expressions sometimes still occurs. This paper proposes a method for improving the AlexNet model for application in the FER area. Some pre-processing procedures were performed on the image dataset, including resizing the image size to 227x227, converting the image to RGB (Red Blue Green) format, adjusting the contrast level of the image using CLAHE (Contrast Limited Adaptive Histogram Equalization), and augmenting by cropping the dataset image. Meanwhile, fine-tuning the AlexNet model was done by changing the ReLU activation function to Leaky ReLU, input normalization from cross channel to batch normalization, and two dropout values (from 0.5 to 0.3 and 0), and changing the number of output classifications from 1000 to 7. The experimental results show that the proposed method enhances standard AlexNet’s performance by improving its accuracy to 24.82% on the CK+ dataset and 20.05% on the KDEF dataset. There is no misclassification of facial expressions when using the proposed method, as it occurs when using the standard AlexNet model.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Improving AlexNet’s Performance in The Area of Facial Expressions Recognition\",\"authors\":\"Akhmad Sarif, D. Gunawan\",\"doi\":\"10.1109/IAICT59002.2023.10205951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial Expression Recognition (FER) through digital images has undergone significant development in line with the development of computer vision technology and artificial intelligence. Facial expression recognition that has utilized deep learning shows promising results. By using deep learning, classifying millions of digital images can be easier and more accurate. However, misclassification of facial expressions sometimes still occurs. This paper proposes a method for improving the AlexNet model for application in the FER area. Some pre-processing procedures were performed on the image dataset, including resizing the image size to 227x227, converting the image to RGB (Red Blue Green) format, adjusting the contrast level of the image using CLAHE (Contrast Limited Adaptive Histogram Equalization), and augmenting by cropping the dataset image. Meanwhile, fine-tuning the AlexNet model was done by changing the ReLU activation function to Leaky ReLU, input normalization from cross channel to batch normalization, and two dropout values (from 0.5 to 0.3 and 0), and changing the number of output classifications from 1000 to 7. The experimental results show that the proposed method enhances standard AlexNet’s performance by improving its accuracy to 24.82% on the CK+ dataset and 20.05% on the KDEF dataset. There is no misclassification of facial expressions when using the proposed method, as it occurs when using the standard AlexNet model.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着计算机视觉技术和人工智能的发展,基于数字图像的面部表情识别技术得到了长足的发展。利用深度学习的面部表情识别显示出良好的效果。通过使用深度学习,对数以百万计的数字图像进行分类可以更容易、更准确。然而,对面部表情的错误分类有时仍然会发生。本文提出了一种改进AlexNet模型的方法,使其应用于FER领域。对图像数据集进行了一些预处理程序,包括将图像大小调整为227x227,将图像转换为RGB(红蓝绿)格式,使用CLAHE(对比度有限自适应直方图均衡化)调整图像的对比度水平,以及通过裁剪数据集图像进行增强。同时,对AlexNet模型进行微调,将ReLU激活函数改为Leaky ReLU,将输入归一化从跨通道改为批处理归一化,设置两个dropout值(从0.5到0.3和0),并将输出分类数从1000更改为7。实验结果表明,该方法提高了标准AlexNet的性能,在CK+数据集上的准确率达到24.82%,在KDEF数据集上的准确率达到20.05%。当使用所提出的方法时,不会出现面部表情的错误分类,因为使用标准AlexNet模型时会发生这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Improving AlexNet’s Performance in The Area of Facial Expressions Recognition
Facial Expression Recognition (FER) through digital images has undergone significant development in line with the development of computer vision technology and artificial intelligence. Facial expression recognition that has utilized deep learning shows promising results. By using deep learning, classifying millions of digital images can be easier and more accurate. However, misclassification of facial expressions sometimes still occurs. This paper proposes a method for improving the AlexNet model for application in the FER area. Some pre-processing procedures were performed on the image dataset, including resizing the image size to 227x227, converting the image to RGB (Red Blue Green) format, adjusting the contrast level of the image using CLAHE (Contrast Limited Adaptive Histogram Equalization), and augmenting by cropping the dataset image. Meanwhile, fine-tuning the AlexNet model was done by changing the ReLU activation function to Leaky ReLU, input normalization from cross channel to batch normalization, and two dropout values (from 0.5 to 0.3 and 0), and changing the number of output classifications from 1000 to 7. The experimental results show that the proposed method enhances standard AlexNet’s performance by improving its accuracy to 24.82% on the CK+ dataset and 20.05% on the KDEF dataset. There is no misclassification of facial expressions when using the proposed method, as it occurs when using the standard AlexNet model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UE Clustering Based on Grid Affinity Propagation for mmWave D2D in Virtual Small Cells Temporal-Spatial Time Series Self-Attention 2D & 3D Human Motion Forecasting An End-to-end Anchorless Approach to Recognize Hand Gestures using CenterNet Automated Human Facial Emotion Recognition System Using Depthwise Separable Convolutional Neural Network Snacks Detection Under Overlapped Conditions Using Computer Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1