生物质增值中的乙缩醛战略:综述

Jian He, Qian Qiang, Li Bai, Wentao Su, Huazhong Yu, Shima Liu and Changzhi Li
{"title":"生物质增值中的乙缩醛战略:综述","authors":"Jian He, Qian Qiang, Li Bai, Wentao Su, Huazhong Yu, Shima Liu and Changzhi Li","doi":"10.1039/D3IM00050H","DOIUrl":null,"url":null,"abstract":"<p>Acetalization represents an appealing approach for the valorization of biobased platform molecules into valuable chemicals and fuels. Typically, it serves as both a synthesis tool for renewable cyclic acetals and a protection strategy to improve selectivity in biomass conversion. This contribution provides an overview on the application of the acetalization strategy in biomass valorization including synthesis of cyclic acetal fuel additives from the acetalization of biobased furanic compounds with biogenic ethylene glycol/glycerol and acetalization as a protection approach to improve product selectivity in biomass valorization. The latest progresses in the development of catalytic systems for the acetalization of biobased furanic compounds and biogenic ethylene glycol/glycerol are systematically summarized and discussed, with an emphasis on the reaction pathway, relationship between catalyst structures and their performance, and relevant catalytic mechanism. Moreover, the application of the acetalization strategy for protecting carbonyl groups/diol structure functionalities to improve the target products' selectivity in lignin depolymerization, 5-hydroxymethylfurfural oxidation, sorbitol dehydration, and xylose hydrogenation is also highlighted. Eventually, the prospects and challenges in the synthesis of cyclic acetal fuel additives as well as applying acetalization as a protection strategy in biomass valorization are outlined.</p><p>Keywords: Oxygenated fuel additives; Furanic compounds; Bioalcohols; Acetalization; Chemocatalysis.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00050h?page=search","citationCount":"0","resultStr":"{\"title\":\"Acetalization strategy in biomass valorization: a review\",\"authors\":\"Jian He, Qian Qiang, Li Bai, Wentao Su, Huazhong Yu, Shima Liu and Changzhi Li\",\"doi\":\"10.1039/D3IM00050H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acetalization represents an appealing approach for the valorization of biobased platform molecules into valuable chemicals and fuels. Typically, it serves as both a synthesis tool for renewable cyclic acetals and a protection strategy to improve selectivity in biomass conversion. This contribution provides an overview on the application of the acetalization strategy in biomass valorization including synthesis of cyclic acetal fuel additives from the acetalization of biobased furanic compounds with biogenic ethylene glycol/glycerol and acetalization as a protection approach to improve product selectivity in biomass valorization. The latest progresses in the development of catalytic systems for the acetalization of biobased furanic compounds and biogenic ethylene glycol/glycerol are systematically summarized and discussed, with an emphasis on the reaction pathway, relationship between catalyst structures and their performance, and relevant catalytic mechanism. Moreover, the application of the acetalization strategy for protecting carbonyl groups/diol structure functionalities to improve the target products' selectivity in lignin depolymerization, 5-hydroxymethylfurfural oxidation, sorbitol dehydration, and xylose hydrogenation is also highlighted. Eventually, the prospects and challenges in the synthesis of cyclic acetal fuel additives as well as applying acetalization as a protection strategy in biomass valorization are outlined.</p><p>Keywords: Oxygenated fuel additives; Furanic compounds; Bioalcohols; Acetalization; Chemocatalysis.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00050h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00050h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00050h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乙缩醛是将生物基平台分子转化为有价值的化学品和燃料的一种有吸引力的方法。通常,它既是可再生环缩醛的合成工具,也是提高生物质转化选择性的保护策略。这篇论文概述了缩醛化策略在生物质能值化中的应用,包括通过生物基呋喃化合物与生物乙二醇/甘油的缩醛化合成环缩醛燃料添加剂,以及将缩醛化作为一种保护方法来提高生物质能值化中的产品选择性。系统总结和讨论了生物基呋喃化合物与生物乙二醇/甘油缩醛反应催化体系开发的最新进展,重点介绍了反应途径、催化剂结构与其性能之间的关系以及相关催化机理。此外,还重点介绍了在木质素解聚、5-羟甲基糠醛氧化、山梨醇脱水和木糖加氢中应用乙缩醛策略保护羰基/二元醇结构官能团以提高目标产物选择性的情况。最后,概述了环缩醛燃料添加剂合成的前景和挑战,以及将缩醛化作为一种保护策略应用于生物质增值的前景和挑战:含氧燃料添加剂;呋喃化合物;生物醇;乙缩醛;化学催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acetalization strategy in biomass valorization: a review

Acetalization represents an appealing approach for the valorization of biobased platform molecules into valuable chemicals and fuels. Typically, it serves as both a synthesis tool for renewable cyclic acetals and a protection strategy to improve selectivity in biomass conversion. This contribution provides an overview on the application of the acetalization strategy in biomass valorization including synthesis of cyclic acetal fuel additives from the acetalization of biobased furanic compounds with biogenic ethylene glycol/glycerol and acetalization as a protection approach to improve product selectivity in biomass valorization. The latest progresses in the development of catalytic systems for the acetalization of biobased furanic compounds and biogenic ethylene glycol/glycerol are systematically summarized and discussed, with an emphasis on the reaction pathway, relationship between catalyst structures and their performance, and relevant catalytic mechanism. Moreover, the application of the acetalization strategy for protecting carbonyl groups/diol structure functionalities to improve the target products' selectivity in lignin depolymerization, 5-hydroxymethylfurfural oxidation, sorbitol dehydration, and xylose hydrogenation is also highlighted. Eventually, the prospects and challenges in the synthesis of cyclic acetal fuel additives as well as applying acetalization as a protection strategy in biomass valorization are outlined.

Keywords: Oxygenated fuel additives; Furanic compounds; Bioalcohols; Acetalization; Chemocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1