变频异步电动机转子棒断的小波包分析

O. Z. I. Abu Ibaid, S. Belhamdi, M. Abid, S. Chakroune, Souhil MOUASSA, Z. S. Al-Sagar
{"title":"变频异步电动机转子棒断的小波包分析","authors":"O. Z. I. Abu Ibaid, S. Belhamdi, M. Abid, S. Chakroune, Souhil MOUASSA, Z. S. Al-Sagar","doi":"10.20998/2074-272x.2023.3.01","DOIUrl":null,"url":null,"abstract":"Introduction. In various industrial processes, squirrel cage induction motors are widely employed. These motors can be used in harsh situations, such as non-ventilated spaces, due to their high strength and longevity. These machines are subject to malfunctions such as short circuits and broken bars. Indeed, for the diagnosis several techniques are offered and used. Novelty of the proposed work provides the use of wavelet analysis technology in a continuous and discrete system to detect faults affecting the rotating part of an induction motor fed by a three-phase inverter. Purpose. This paper aims to present a novel technique for diagnosing broken rotor bars in the low-load, stationary induction machine proposed. The technique is used to address the problem of using the traditional Techniques like Fourier Transforms signal processing algorithm by analyzing the stator current envelope. The suggested method is based on the use of discrete wavelet transform and continuous wavelet transform. Methods. A waveform can be monitored at any frequency of interest using the suggested discrete wavelet transform and continuous wavelet transform. To identify the rotor broken bar fault, stator current frequency spectrum is analyzed and then examined. Based on a suitable index, the algorithm separates the healthy motor from the defective one, with 1, 2 and 3 broken bars at no-load. Results. In comparison to the healthy conditions, the recommended index significantly raises under the broken bars conditions. It can identify the problematic conditions with clarity. The possibility of detecting potential faults has been demonstrated (broken bars), using discrete wavelet transform and continuous wavelet transform. The diagnostic method is adaptable to temporary situations brought on by alterations in load and speed. Performance and efficacy of the suggested diagnostic method are demonstrated through simulation in Simulink® MATLAB environment.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet packet analysis for rotor bar breakage in an inverter induction motor\",\"authors\":\"O. Z. I. Abu Ibaid, S. Belhamdi, M. Abid, S. Chakroune, Souhil MOUASSA, Z. S. Al-Sagar\",\"doi\":\"10.20998/2074-272x.2023.3.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. In various industrial processes, squirrel cage induction motors are widely employed. These motors can be used in harsh situations, such as non-ventilated spaces, due to their high strength and longevity. These machines are subject to malfunctions such as short circuits and broken bars. Indeed, for the diagnosis several techniques are offered and used. Novelty of the proposed work provides the use of wavelet analysis technology in a continuous and discrete system to detect faults affecting the rotating part of an induction motor fed by a three-phase inverter. Purpose. This paper aims to present a novel technique for diagnosing broken rotor bars in the low-load, stationary induction machine proposed. The technique is used to address the problem of using the traditional Techniques like Fourier Transforms signal processing algorithm by analyzing the stator current envelope. The suggested method is based on the use of discrete wavelet transform and continuous wavelet transform. Methods. A waveform can be monitored at any frequency of interest using the suggested discrete wavelet transform and continuous wavelet transform. To identify the rotor broken bar fault, stator current frequency spectrum is analyzed and then examined. Based on a suitable index, the algorithm separates the healthy motor from the defective one, with 1, 2 and 3 broken bars at no-load. Results. In comparison to the healthy conditions, the recommended index significantly raises under the broken bars conditions. It can identify the problematic conditions with clarity. The possibility of detecting potential faults has been demonstrated (broken bars), using discrete wavelet transform and continuous wavelet transform. The diagnostic method is adaptable to temporary situations brought on by alterations in load and speed. Performance and efficacy of the suggested diagnostic method are demonstrated through simulation in Simulink® MATLAB environment.\",\"PeriodicalId\":170736,\"journal\":{\"name\":\"Electrical Engineering & Electromechanics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering & Electromechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2074-272x.2023.3.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering & Electromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2074-272x.2023.3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍。在各种工业过程中,鼠笼式感应电动机得到了广泛的应用。这些电机可以在恶劣的情况下使用,如不通风的空间,由于他们的高强度和寿命。这些机器容易出故障,如短路和断条。事实上,为诊断提供和使用了几种技术。提出的工作的新颖之处在于在连续和离散系统中使用小波分析技术来检测影响三相逆变器馈电感应电机旋转部分的故障。目的。提出了一种诊断低负荷静止感应电机转子断条的新方法。该技术通过分析定子电流包络线,解决了傅立叶变换等传统信号处理算法的问题。该方法基于离散小波变换和连续小波变换的结合。方法。使用建议的离散小波变换和连续小波变换可以在任何感兴趣的频率下监测波形。为了识别转子断条故障,对定子电流频谱进行了分析和检测。该算法根据一个合适的指标,将健康电机与故障电机分开,在空载时分别有1条、2条和3条断条。结果。与健康条件相比,断条条件下的推荐指数显著提高。它可以清晰地识别出有问题的情况。利用离散小波变换和连续小波变换证明了检测潜在故障(断条)的可能性。这种诊断方法适用于负荷和速度变化引起的临时情况。通过Simulink®MATLAB环境下的仿真,验证了所提出的诊断方法的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet packet analysis for rotor bar breakage in an inverter induction motor
Introduction. In various industrial processes, squirrel cage induction motors are widely employed. These motors can be used in harsh situations, such as non-ventilated spaces, due to their high strength and longevity. These machines are subject to malfunctions such as short circuits and broken bars. Indeed, for the diagnosis several techniques are offered and used. Novelty of the proposed work provides the use of wavelet analysis technology in a continuous and discrete system to detect faults affecting the rotating part of an induction motor fed by a three-phase inverter. Purpose. This paper aims to present a novel technique for diagnosing broken rotor bars in the low-load, stationary induction machine proposed. The technique is used to address the problem of using the traditional Techniques like Fourier Transforms signal processing algorithm by analyzing the stator current envelope. The suggested method is based on the use of discrete wavelet transform and continuous wavelet transform. Methods. A waveform can be monitored at any frequency of interest using the suggested discrete wavelet transform and continuous wavelet transform. To identify the rotor broken bar fault, stator current frequency spectrum is analyzed and then examined. Based on a suitable index, the algorithm separates the healthy motor from the defective one, with 1, 2 and 3 broken bars at no-load. Results. In comparison to the healthy conditions, the recommended index significantly raises under the broken bars conditions. It can identify the problematic conditions with clarity. The possibility of detecting potential faults has been demonstrated (broken bars), using discrete wavelet transform and continuous wavelet transform. The diagnostic method is adaptable to temporary situations brought on by alterations in load and speed. Performance and efficacy of the suggested diagnostic method are demonstrated through simulation in Simulink® MATLAB environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive controller for power quality control in high speed railway with electric locomotives with asynchronous traction motors Analytical method of determining conditions for full compensation of reactive power in the power supply system Maximum power point tracking improvement using type-2 fuzzy controller for wind system based on the double fed induction generator Calculation and experimental determination of the speed of advancement of the plasma leader channel of a pulse spark discharge in atmospheric air Smart current control of the wind energy conversion system based permanent magnet synchronous generator using predictive and hysteresis model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1