{"title":"基于规范的定向测试压缩,用于流水线处理器的功能验证","authors":"Heon-Mo Koo, P. Mishra","doi":"10.1145/1450135.1450167","DOIUrl":null,"url":null,"abstract":"Functional validation is a major bottleneck in microprocessor design methodology. Simulation is the widely used method for functional validation using billions of random and biased-random test programs. Although directed tests require a smaller test set compared to random tests to achieve the same functional coverage goal, there is a lack of automated techniques for directed test generation. Furthermore, the number of directed tests can still be prohibitively large. This paper presents a methodology for specification-based coverage analysis and test generation. The primary contribution of this paper is a compaction technique that can drastically reduce the required number of directed test programs to achieve a coverage goal. Our experimental results using a MIPS processor and an industrial processor (e500) demonstrate more than 90% reduction in number of directed tests without sacrificing the functional coverage goal.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Specification-based compaction of directed tests for functional validation of pipelined processors\",\"authors\":\"Heon-Mo Koo, P. Mishra\",\"doi\":\"10.1145/1450135.1450167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional validation is a major bottleneck in microprocessor design methodology. Simulation is the widely used method for functional validation using billions of random and biased-random test programs. Although directed tests require a smaller test set compared to random tests to achieve the same functional coverage goal, there is a lack of automated techniques for directed test generation. Furthermore, the number of directed tests can still be prohibitively large. This paper presents a methodology for specification-based coverage analysis and test generation. The primary contribution of this paper is a compaction technique that can drastically reduce the required number of directed test programs to achieve a coverage goal. Our experimental results using a MIPS processor and an industrial processor (e500) demonstrate more than 90% reduction in number of directed tests without sacrificing the functional coverage goal.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1450135.1450167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450135.1450167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Specification-based compaction of directed tests for functional validation of pipelined processors
Functional validation is a major bottleneck in microprocessor design methodology. Simulation is the widely used method for functional validation using billions of random and biased-random test programs. Although directed tests require a smaller test set compared to random tests to achieve the same functional coverage goal, there is a lack of automated techniques for directed test generation. Furthermore, the number of directed tests can still be prohibitively large. This paper presents a methodology for specification-based coverage analysis and test generation. The primary contribution of this paper is a compaction technique that can drastically reduce the required number of directed test programs to achieve a coverage goal. Our experimental results using a MIPS processor and an industrial processor (e500) demonstrate more than 90% reduction in number of directed tests without sacrificing the functional coverage goal.