基于支持向量机的声信号被动车型识别方法

X. Qi, Jian-wei Ji, X. Han, Z. Yuan
{"title":"基于支持向量机的声信号被动车型识别方法","authors":"X. Qi, Jian-wei Ji, X. Han, Z. Yuan","doi":"10.1109/WGEC.2009.117","DOIUrl":null,"url":null,"abstract":"An approach of power spectrum estimation is utilized to extract the feature vectors from acoustic signal radiated from different types of moving vehicles. A method of feature selection based on principal component analysis (PCA) is proposed to reconstruct effective feature vectors via dimension reduction. The classification of three typical targets is achieved by supported vector machine (SVM). Experiment results show that the approach presented in the paper for automatic recognition of vehicle type is effective.","PeriodicalId":277950,"journal":{"name":"2009 Third International Conference on Genetic and Evolutionary Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Approach of Passive Vehicle Type Recognition by Acoustic Signal Based on SVM\",\"authors\":\"X. Qi, Jian-wei Ji, X. Han, Z. Yuan\",\"doi\":\"10.1109/WGEC.2009.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach of power spectrum estimation is utilized to extract the feature vectors from acoustic signal radiated from different types of moving vehicles. A method of feature selection based on principal component analysis (PCA) is proposed to reconstruct effective feature vectors via dimension reduction. The classification of three typical targets is achieved by supported vector machine (SVM). Experiment results show that the approach presented in the paper for automatic recognition of vehicle type is effective.\",\"PeriodicalId\":277950,\"journal\":{\"name\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WGEC.2009.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2009.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

利用功率谱估计方法提取不同类型运动车辆的声信号特征向量。提出了一种基于主成分分析(PCA)的特征选择方法,通过降维重构有效特征向量。利用支持向量机(SVM)对三个典型目标进行分类。实验结果表明,本文提出的车辆类型自动识别方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Approach of Passive Vehicle Type Recognition by Acoustic Signal Based on SVM
An approach of power spectrum estimation is utilized to extract the feature vectors from acoustic signal radiated from different types of moving vehicles. A method of feature selection based on principal component analysis (PCA) is proposed to reconstruct effective feature vectors via dimension reduction. The classification of three typical targets is achieved by supported vector machine (SVM). Experiment results show that the approach presented in the paper for automatic recognition of vehicle type is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Robust Stabilization for the Delay Neural Networks with Nonlinear Perturbations A New Association Rules Mining Algorithm Based on Vector Research on Multidisciplinary Design Optimization Based Response Surface Technology of Artificial Neural Network Chaotic Analysis of Seismic Time Series and Short-Term Prediction with RBF Neural Networks An Optimization Approach of Ant Colony Algorithm and Adaptive Genetic Algorithm for MCM Interconnect Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1