{"title":"关于在燃气爆炸时选择最佳燃烧类型","authors":"Дмитрий Валентинович Воронин","doi":"10.30826/icpcd13a06","DOIUrl":null,"url":null,"abstract":"Проведено численное моделирование непрерывной газовой детонации в камере сгорания на основе уравнений Навье–Стокса с учетом турбулентности и диффузии веществ. Выполнен сравнительный анализ эффективности детонационного сгорания топлива в зависимости от геометрических параметров камер. Рассмотрены три возможных типа камеры (см. рисунок). Горючее и окислитель подавались в камеры раздельно через форсунки $S_1$ под определенным углом к поверхности камеры. Детонационный процесс во многом определялся интенсивностью турбулентного перемешивания реагентов (водород и кислород). Поверхность $S_2$ — область выхода продуктов детонации в атмосферу. Как показывают расчеты, для камеры первого типа характерно образование локальных зон с повышенными значениями термодинамических параметров, что может приводить к самопроизвольному {воспламенению} топлива и неоптимальному режиму работы двигателя. Здесь подача газа осуществляется сверху, а выход — направо. У стенки канала в пограничных слоях образуется область с повышенными значениями температуры (около 2000 K), что превышает температуру самовоспламенения смеси (1200 K). Для камеры второго типа характерно возникновение застойных зон у поверхности $S_1$ и выход значительной части непрореагировавшего топлива в атмосферу. Давление газа в камере у поверхностей входа $S_{11}$ и $S_{12}$ достигает значений 12 атм, что превышает давление газа в ресиверах (10 атм). Это приводит к запиранию потока и временному прекращению поступления водорода и кислорода в проточную камеру. Если поверхность $S_2$ расположена достаточно близко к поверхностям входа (менее 20 мм) и волна разрежения быстро уменьшит значения давления и температуры реагирующего газа, то наступает срыв детонации, что нарушает оптимальное функционирование камеры. Наиболее оптимальной выглядит камера 3-го типа, имеющая наиболее простую форму и позволяющая регулировать процесс перемешивания, меняя угол наклона струй топлива и окислителя по отношению к поверхности.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"О ВЫБОРЕ ОПТИМАЛЬНЫХ ТИПОВ КАМЕР СГОРАНИЯ ПРИ ИНИЦИИРОВАНИИ ГАЗОВОЙ ДЕТОНАЦИИ\",\"authors\":\"Дмитрий Валентинович Воронин\",\"doi\":\"10.30826/icpcd13a06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Проведено численное моделирование непрерывной газовой детонации в камере сгорания на основе уравнений Навье–Стокса с учетом турбулентности и диффузии веществ. Выполнен сравнительный анализ эффективности детонационного сгорания топлива в зависимости от геометрических параметров камер. Рассмотрены три возможных типа камеры (см. рисунок). Горючее и окислитель подавались в камеры раздельно через форсунки $S_1$ под определенным углом к поверхности камеры. Детонационный процесс во многом определялся интенсивностью турбулентного перемешивания реагентов (водород и кислород). Поверхность $S_2$ — область выхода продуктов детонации в атмосферу. Как показывают расчеты, для камеры первого типа характерно образование локальных зон с повышенными значениями термодинамических параметров, что может приводить к самопроизвольному {воспламенению} топлива и неоптимальному режиму работы двигателя. Здесь подача газа осуществляется сверху, а выход — направо. У стенки канала в пограничных слоях образуется область с повышенными значениями температуры (около 2000 K), что превышает температуру самовоспламенения смеси (1200 K). Для камеры второго типа характерно возникновение застойных зон у поверхности $S_1$ и выход значительной части непрореагировавшего топлива в атмосферу. Давление газа в камере у поверхностей входа $S_{11}$ и $S_{12}$ достигает значений 12 атм, что превышает давление газа в ресиверах (10 атм). Это приводит к запиранию потока и временному прекращению поступления водорода и кислорода в проточную камеру. Если поверхность $S_2$ расположена достаточно близко к поверхностям входа (менее 20 мм) и волна разрежения быстро уменьшит значения давления и температуры реагирующего газа, то наступает срыв детонации, что нарушает оптимальное функционирование камеры. Наиболее оптимальной выглядит камера 3-го типа, имеющая наиболее простую форму и позволяющая регулировать процесс перемешивания, меняя угол наклона струй топлива и окислителя по отношению к поверхности.\",\"PeriodicalId\":326374,\"journal\":{\"name\":\"ADVANCES IN DETONATION RESEARCH\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVANCES IN DETONATION RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30826/icpcd13a06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN DETONATION RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30826/icpcd13a06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
О ВЫБОРЕ ОПТИМАЛЬНЫХ ТИПОВ КАМЕР СГОРАНИЯ ПРИ ИНИЦИИРОВАНИИ ГАЗОВОЙ ДЕТОНАЦИИ
Проведено численное моделирование непрерывной газовой детонации в камере сгорания на основе уравнений Навье–Стокса с учетом турбулентности и диффузии веществ. Выполнен сравнительный анализ эффективности детонационного сгорания топлива в зависимости от геометрических параметров камер. Рассмотрены три возможных типа камеры (см. рисунок). Горючее и окислитель подавались в камеры раздельно через форсунки $S_1$ под определенным углом к поверхности камеры. Детонационный процесс во многом определялся интенсивностью турбулентного перемешивания реагентов (водород и кислород). Поверхность $S_2$ — область выхода продуктов детонации в атмосферу. Как показывают расчеты, для камеры первого типа характерно образование локальных зон с повышенными значениями термодинамических параметров, что может приводить к самопроизвольному {воспламенению} топлива и неоптимальному режиму работы двигателя. Здесь подача газа осуществляется сверху, а выход — направо. У стенки канала в пограничных слоях образуется область с повышенными значениями температуры (около 2000 K), что превышает температуру самовоспламенения смеси (1200 K). Для камеры второго типа характерно возникновение застойных зон у поверхности $S_1$ и выход значительной части непрореагировавшего топлива в атмосферу. Давление газа в камере у поверхностей входа $S_{11}$ и $S_{12}$ достигает значений 12 атм, что превышает давление газа в ресиверах (10 атм). Это приводит к запиранию потока и временному прекращению поступления водорода и кислорода в проточную камеру. Если поверхность $S_2$ расположена достаточно близко к поверхностям входа (менее 20 мм) и волна разрежения быстро уменьшит значения давления и температуры реагирующего газа, то наступает срыв детонации, что нарушает оптимальное функционирование камеры. Наиболее оптимальной выглядит камера 3-го типа, имеющая наиболее простую форму и позволяющая регулировать процесс перемешивания, меняя угол наклона струй топлива и окислителя по отношению к поверхности.