智能手机数据保护优化神经网络

Wen-Chen Hu, Yanjun Zuo, N. Kaabouch, Lei Chen
{"title":"智能手机数据保护优化神经网络","authors":"Wen-Chen Hu, Yanjun Zuo, N. Kaabouch, Lei Chen","doi":"10.1109/EIT.2010.5612088","DOIUrl":null,"url":null,"abstract":"Since the launch of iPhones in 2007, smartphones become very popular these days. Because of their small sizes and high mobility, smartphones are easily lost or stolen. When people lost their smartphones, they are worried the private data stored in the phones may be revealed to strangers. This research proposes a novel approach for mobile data protection. Mobile usage data is first collected and usage patterns are then discovered and saved. An optimization Hopfield neural network is proposed to match the usage data with the stored usage patterns. When an unusual usage pattern such as an unlawful user trying to access the mobile data is detected, the device will automatically lock itself down until a further action is taken. Experimental results show this method is effective and convenient for mobile data protection.","PeriodicalId":305049,"journal":{"name":"2010 IEEE International Conference on Electro/Information Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An optimization neural network for smartphone data protection\",\"authors\":\"Wen-Chen Hu, Yanjun Zuo, N. Kaabouch, Lei Chen\",\"doi\":\"10.1109/EIT.2010.5612088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the launch of iPhones in 2007, smartphones become very popular these days. Because of their small sizes and high mobility, smartphones are easily lost or stolen. When people lost their smartphones, they are worried the private data stored in the phones may be revealed to strangers. This research proposes a novel approach for mobile data protection. Mobile usage data is first collected and usage patterns are then discovered and saved. An optimization Hopfield neural network is proposed to match the usage data with the stored usage patterns. When an unusual usage pattern such as an unlawful user trying to access the mobile data is detected, the device will automatically lock itself down until a further action is taken. Experimental results show this method is effective and convenient for mobile data protection.\",\"PeriodicalId\":305049,\"journal\":{\"name\":\"2010 IEEE International Conference on Electro/Information Technology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Electro/Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2010.5612088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Electro/Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2010.5612088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自从2007年iphone推出以来,智能手机变得非常受欢迎。由于智能手机体积小,移动性高,很容易丢失或被盗。当人们丢失智能手机时,他们担心手机中存储的私人数据可能会泄露给陌生人。本研究提出了一种新的移动数据保护方法。首先收集移动使用数据,然后发现并保存使用模式。提出了一种优化的Hopfield神经网络,将使用数据与存储的使用模式进行匹配。当检测到不寻常的使用模式,例如非法用户试图访问移动数据时,设备将自动锁定自己,直到采取进一步的行动。实验结果表明,该方法对移动数据保护有效、方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimization neural network for smartphone data protection
Since the launch of iPhones in 2007, smartphones become very popular these days. Because of their small sizes and high mobility, smartphones are easily lost or stolen. When people lost their smartphones, they are worried the private data stored in the phones may be revealed to strangers. This research proposes a novel approach for mobile data protection. Mobile usage data is first collected and usage patterns are then discovered and saved. An optimization Hopfield neural network is proposed to match the usage data with the stored usage patterns. When an unusual usage pattern such as an unlawful user trying to access the mobile data is detected, the device will automatically lock itself down until a further action is taken. Experimental results show this method is effective and convenient for mobile data protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organizing committee Copyright page Adaptive filtering and target detection for ultrasonic backscattered signal An automated content-based segmentation framework: Application to MR images of knee for osteoarthritis research Secure applications — Hack-proofing your app
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1