在弱势网络中使用智能代理进行社会感知

Reginald L. Hobbs, William Dron
{"title":"在弱势网络中使用智能代理进行社会感知","authors":"Reginald L. Hobbs, William Dron","doi":"10.1109/MASS.2015.96","DOIUrl":null,"url":null,"abstract":"Users who retrieve information across disadvantaged networks need to do so in such a way as to minimize network performance impact while maximizing the usefulness and quality of information (QOI) received. Taking advantage of features from all three network genres (telecommunication, information, and social) will enable this balancing act. These users also need to interact using unstructured, ad-hoc queries to decrease the cognitive overload of specialized training or the necessity of learning a constrained language. High QOI can be maintained if an intelligent agent on the network can use social sensing to capture the intent of the query and identify the implied task. Knowing the task will allow other agents that service the requests to filter, summarize, or transcode data prior to responding, lessening the network footprint. This paper describes an approach that uses natural language processing (NLP) techniques, multi-valued logic based inferencing, network status checking, and task-relevant metrics for information retrieval. This research effort has resulted in a low-level NLP approach that can be used to capture intent from unstructured text, a quality metric formed from intrinsic and extrinsic attributes of the objects and the tasks under consideration, and a simple inferencing approach to allow intelligent agents to make quality assessments, delivering the appropriate form of the information that will lessen the impact on a disadvantaged network.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Intelligent Agents for Social Sensing across Disadvantaged Networks\",\"authors\":\"Reginald L. Hobbs, William Dron\",\"doi\":\"10.1109/MASS.2015.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Users who retrieve information across disadvantaged networks need to do so in such a way as to minimize network performance impact while maximizing the usefulness and quality of information (QOI) received. Taking advantage of features from all three network genres (telecommunication, information, and social) will enable this balancing act. These users also need to interact using unstructured, ad-hoc queries to decrease the cognitive overload of specialized training or the necessity of learning a constrained language. High QOI can be maintained if an intelligent agent on the network can use social sensing to capture the intent of the query and identify the implied task. Knowing the task will allow other agents that service the requests to filter, summarize, or transcode data prior to responding, lessening the network footprint. This paper describes an approach that uses natural language processing (NLP) techniques, multi-valued logic based inferencing, network status checking, and task-relevant metrics for information retrieval. This research effort has resulted in a low-level NLP approach that can be used to capture intent from unstructured text, a quality metric formed from intrinsic and extrinsic attributes of the objects and the tasks under consideration, and a simple inferencing approach to allow intelligent agents to make quality assessments, delivering the appropriate form of the information that will lessen the impact on a disadvantaged network.\",\"PeriodicalId\":436496,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2015.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在不利的网络上检索信息的用户需要这样做,即尽量减少对网络性能的影响,同时最大限度地提高所接收信息的有用性和质量(QOI)。利用所有三种网络类型(电信、信息和社交)的功能将实现这种平衡。这些用户还需要使用非结构化的临时查询进行交互,以减少专业培训的认知过载或学习受限语言的必要性。如果网络上的智能代理可以使用社会感知来捕获查询的意图并识别隐含的任务,则可以保持高QOI。了解该任务将允许为请求提供服务的其他代理在响应之前过滤、汇总或转码数据,从而减少网络占用。本文描述了一种使用自然语言处理(NLP)技术、基于多值逻辑的推理、网络状态检查和任务相关度量来进行信息检索的方法。这项研究成果产生了一种低级的NLP方法,可用于从非结构化文本中捕获意图,一种由对象和所考虑的任务的内在和外在属性形成的质量度量标准,以及一种简单的推理方法,允许智能代理进行质量评估,提供适当形式的信息,以减少对不利网络的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Intelligent Agents for Social Sensing across Disadvantaged Networks
Users who retrieve information across disadvantaged networks need to do so in such a way as to minimize network performance impact while maximizing the usefulness and quality of information (QOI) received. Taking advantage of features from all three network genres (telecommunication, information, and social) will enable this balancing act. These users also need to interact using unstructured, ad-hoc queries to decrease the cognitive overload of specialized training or the necessity of learning a constrained language. High QOI can be maintained if an intelligent agent on the network can use social sensing to capture the intent of the query and identify the implied task. Knowing the task will allow other agents that service the requests to filter, summarize, or transcode data prior to responding, lessening the network footprint. This paper describes an approach that uses natural language processing (NLP) techniques, multi-valued logic based inferencing, network status checking, and task-relevant metrics for information retrieval. This research effort has resulted in a low-level NLP approach that can be used to capture intent from unstructured text, a quality metric formed from intrinsic and extrinsic attributes of the objects and the tasks under consideration, and a simple inferencing approach to allow intelligent agents to make quality assessments, delivering the appropriate form of the information that will lessen the impact on a disadvantaged network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Provisioning for High Energy Efficiency and Resource Utilization in Cloud RANs An Energy Efficient and Restricted Tour Construction for Mobile Sink in Wireless Sensor Networks MQCC: Maximum Queue Congestion Control for Multipath Networks with Blockage Context-Aware Crowd-Sensing in Opportunistic Mobile Social Networks Study of Hadoop-MapReduce on Google N-Gram Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1