{"title":"非线性奇异谱分析","authors":"W. W. Hsieh, Aiming Wu","doi":"10.1109/IJCNN.2002.1007595","DOIUrl":null,"url":null,"abstract":"Singular spectrum analysis (SSA), a linear univariate and multivariate time series technique, is essentially principal component analysis (PCA) applied to the time series and additional copies of the time series lagged by 1 to L-1 time steps. Neural network theory has meanwhile allowed PCA to be generalized to nonlinear PCA (NLPCA). In the paper, NLPCA is further extended to perform nonlinear SSA (NLSSA). First, SSA is applied to the data, then the leading principal components of the SSA are chosen as inputs to an NLPCA network (with a circular node at the bottleneck), which performs the NLSSA by nonlinearly combining all the input SSA modes into a single NLSSA mode. This nonlinear spectral technique allows the detection of highly anharmonic oscillations, as illustrated by a stretched square wave imbedded in white noise, which shows NLSSA to be superior to SSA and classical Fourier spectral analysis.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Nonlinear singular spectrum analysis\",\"authors\":\"W. W. Hsieh, Aiming Wu\",\"doi\":\"10.1109/IJCNN.2002.1007595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singular spectrum analysis (SSA), a linear univariate and multivariate time series technique, is essentially principal component analysis (PCA) applied to the time series and additional copies of the time series lagged by 1 to L-1 time steps. Neural network theory has meanwhile allowed PCA to be generalized to nonlinear PCA (NLPCA). In the paper, NLPCA is further extended to perform nonlinear SSA (NLSSA). First, SSA is applied to the data, then the leading principal components of the SSA are chosen as inputs to an NLPCA network (with a circular node at the bottleneck), which performs the NLSSA by nonlinearly combining all the input SSA modes into a single NLSSA mode. This nonlinear spectral technique allows the detection of highly anharmonic oscillations, as illustrated by a stretched square wave imbedded in white noise, which shows NLSSA to be superior to SSA and classical Fourier spectral analysis.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

奇异谱分析(SSA)是一种线性单变量和多变量时间序列技术,本质上是将主成分分析(PCA)应用于时间序列和滞后1到L-1时间步的时间序列的附加副本。同时,神经网络理论将主成分分析推广到非线性主成分分析(NLPCA)。本文将NLPCA进一步扩展到非线性SSA (NLSSA)。首先,将SSA应用于数据,然后选择SSA的主要主成分作为NLPCA网络的输入(瓶颈处有一个圆形节点),该网络通过将所有输入SSA模式非线性组合成单个NLSSA模式来执行NLSSA。这种非线性频谱技术可以检测高度非谐波振荡,如嵌入白噪声的拉伸方波所示,这表明NLSSA优于SSA和经典傅立叶频谱分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear singular spectrum analysis
Singular spectrum analysis (SSA), a linear univariate and multivariate time series technique, is essentially principal component analysis (PCA) applied to the time series and additional copies of the time series lagged by 1 to L-1 time steps. Neural network theory has meanwhile allowed PCA to be generalized to nonlinear PCA (NLPCA). In the paper, NLPCA is further extended to perform nonlinear SSA (NLSSA). First, SSA is applied to the data, then the leading principal components of the SSA are chosen as inputs to an NLPCA network (with a circular node at the bottleneck), which performs the NLSSA by nonlinearly combining all the input SSA modes into a single NLSSA mode. This nonlinear spectral technique allows the detection of highly anharmonic oscillations, as illustrated by a stretched square wave imbedded in white noise, which shows NLSSA to be superior to SSA and classical Fourier spectral analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1