用正弦和模型分析疲劳条件下表面肌电信号

Divya Sasidharan, G. Venugopal
{"title":"用正弦和模型分析疲劳条件下表面肌电信号","authors":"Divya Sasidharan, G. Venugopal","doi":"10.1109/ICCSP48568.2020.9182049","DOIUrl":null,"url":null,"abstract":"Muscle fatigue is a common experience for all age groups. In this work a model to fit the fatigue and non fatigue surface electromyography (sEMG) signals using sum of sines is proposed. Signals are recorded from Biceps Brachii muscle of five healthy volunteers until fatigue using a well defined protocol. The fatigue and non fatigue conditions are analysed separately by non linear dynamical model. The sum of sine model is selected for fitting the signals. The sin7 model is found to be the best non linear fit for non fatigue condition and sin8 for fatigue condition. The Root Mean Square Error (RMSE) of fatigue condition reduced by 4 from sin7 model to sin8 model. Also the fatigue signal tends to be periodic than non fatigue signal. This method may be further extended to the non linear analysis of muscular disorders.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Surface EMG Signals under Fatigue Conditions using Sum of Sines Models\",\"authors\":\"Divya Sasidharan, G. Venugopal\",\"doi\":\"10.1109/ICCSP48568.2020.9182049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Muscle fatigue is a common experience for all age groups. In this work a model to fit the fatigue and non fatigue surface electromyography (sEMG) signals using sum of sines is proposed. Signals are recorded from Biceps Brachii muscle of five healthy volunteers until fatigue using a well defined protocol. The fatigue and non fatigue conditions are analysed separately by non linear dynamical model. The sum of sine model is selected for fitting the signals. The sin7 model is found to be the best non linear fit for non fatigue condition and sin8 for fatigue condition. The Root Mean Square Error (RMSE) of fatigue condition reduced by 4 from sin7 model to sin8 model. Also the fatigue signal tends to be periodic than non fatigue signal. This method may be further extended to the non linear analysis of muscular disorders.\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

肌肉疲劳是所有年龄组的共同经历。本文提出了一种基于正弦和的疲劳与非疲劳表肌电信号拟合模型。使用明确的协议记录5名健康志愿者肱二头肌的信号,直到疲劳。采用非线性动力学模型对疲劳工况和非疲劳工况进行了分析。选择正弦和模型拟合信号。结果表明,在非疲劳状态下,sin7模型的非线性拟合效果最好,而在疲劳状态下,sin8模型的非线性拟合效果最好。从sin7模型到sin8模型,疲劳状态的均方根误差(RMSE)减小了4。疲劳信号比非疲劳信号更具有周期性。该方法可进一步推广到肌肉疾病的非线性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Surface EMG Signals under Fatigue Conditions using Sum of Sines Models
Muscle fatigue is a common experience for all age groups. In this work a model to fit the fatigue and non fatigue surface electromyography (sEMG) signals using sum of sines is proposed. Signals are recorded from Biceps Brachii muscle of five healthy volunteers until fatigue using a well defined protocol. The fatigue and non fatigue conditions are analysed separately by non linear dynamical model. The sum of sine model is selected for fitting the signals. The sin7 model is found to be the best non linear fit for non fatigue condition and sin8 for fatigue condition. The Root Mean Square Error (RMSE) of fatigue condition reduced by 4 from sin7 model to sin8 model. Also the fatigue signal tends to be periodic than non fatigue signal. This method may be further extended to the non linear analysis of muscular disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1