基于海量日志的Web应用异常入侵检测模型研究

J. Gong
{"title":"基于海量日志的Web应用异常入侵检测模型研究","authors":"J. Gong","doi":"10.1109/ICNISC57059.2022.00010","DOIUrl":null,"url":null,"abstract":"Web log data in university application system is an important source of system operation and maintenance and security analysis. Based on MapReduce architecture, combined with the learning and detection model of attribute length, character distribution characteristics and attribute domain enumeration, this paper presents a massive data intrusion detection learning model and detection algorithm. The system operation results show that the platform can effectively find abnormal intrusion in the campus network, has high retrieval efficiency, and can effectively provide operation and maintenance efficiency and abnormal troubleshooting speed.","PeriodicalId":286467,"journal":{"name":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Web Application Anomaly Intrusion Detection Model Based On Massive Logs\",\"authors\":\"J. Gong\",\"doi\":\"10.1109/ICNISC57059.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web log data in university application system is an important source of system operation and maintenance and security analysis. Based on MapReduce architecture, combined with the learning and detection model of attribute length, character distribution characteristics and attribute domain enumeration, this paper presents a massive data intrusion detection learning model and detection algorithm. The system operation results show that the platform can effectively find abnormal intrusion in the campus network, has high retrieval efficiency, and can effectively provide operation and maintenance efficiency and abnormal troubleshooting speed.\",\"PeriodicalId\":286467,\"journal\":{\"name\":\"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC57059.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC57059.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大学应用系统中的Web日志数据是系统运维和安全分析的重要来源。基于MapReduce架构,结合属性长度、字符分布特征和属性域枚举的学习与检测模型,提出了一种海量数据入侵检测的学习模型和检测算法。系统运行结果表明,该平台能够有效地发现校园网中的异常入侵,检索效率高,能够有效地提供运维效率和异常排除速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Web Application Anomaly Intrusion Detection Model Based On Massive Logs
Web log data in university application system is an important source of system operation and maintenance and security analysis. Based on MapReduce architecture, combined with the learning and detection model of attribute length, character distribution characteristics and attribute domain enumeration, this paper presents a massive data intrusion detection learning model and detection algorithm. The system operation results show that the platform can effectively find abnormal intrusion in the campus network, has high retrieval efficiency, and can effectively provide operation and maintenance efficiency and abnormal troubleshooting speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Untrained Emitter Detection Based on SK-GAND Network Design of High Efficiency Photovoltaic Sound Barrier Study on Intelligent Heterogeneous Computing Technology for Reliable-critical Application Exploring the Seismogenic Structure of the 2016 Yanhu Earthquake Swarm Using Template-based Recognition Techniques The Simulation of the Signal Detection Algorithm in MIMO System Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1