{"title":"基于标准假设的平面模型的自适应硬度和组合安全性","authors":"R. Canetti, Huijia Lin, R. Pass","doi":"10.1137/110847196","DOIUrl":null,"url":null,"abstract":"We construct the first general secure computation protocols that require no trusted infrastructure other than authenticated communication, and that satisfy a meaningful notion of security that is preserved under universal composition—{\\em assuming only the existence of enhanced trapdoor permutations.} The notion of security fits within a generalization of the ``angel-based'' framework of Prabhakaran and Sahai (STOC'04) and implies super-polynomial time simulation security. Security notions of this kind are currently known to be realizable only under strong and specific hardness assumptions. A key element in our construction is a commitment scheme that satisfies a new and strong notion of security. The notion, security against chosen-commitment-attacks (CCA security), means that security holds even if the attacker has access to a {\\em extraction oracle} that gives the adversary decommitment information to commitments of the adversary's choice. This notion is stronger than concurrent non-malleability and is of independent interest. We construct CCA-secure commitments based on standard one-way functions, and with no trusted set-up. To the best of our knowledge, this provides the first construction of a natural cryptographic primitive requiring \\emph{adaptive hardness} from standard hardness assumptions, using no trusted set-up or public keys.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions\",\"authors\":\"R. Canetti, Huijia Lin, R. Pass\",\"doi\":\"10.1137/110847196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct the first general secure computation protocols that require no trusted infrastructure other than authenticated communication, and that satisfy a meaningful notion of security that is preserved under universal composition—{\\\\em assuming only the existence of enhanced trapdoor permutations.} The notion of security fits within a generalization of the ``angel-based'' framework of Prabhakaran and Sahai (STOC'04) and implies super-polynomial time simulation security. Security notions of this kind are currently known to be realizable only under strong and specific hardness assumptions. A key element in our construction is a commitment scheme that satisfies a new and strong notion of security. The notion, security against chosen-commitment-attacks (CCA security), means that security holds even if the attacker has access to a {\\\\em extraction oracle} that gives the adversary decommitment information to commitments of the adversary's choice. This notion is stronger than concurrent non-malleability and is of independent interest. We construct CCA-secure commitments based on standard one-way functions, and with no trusted set-up. To the best of our knowledge, this provides the first construction of a natural cryptographic primitive requiring \\\\emph{adaptive hardness} from standard hardness assumptions, using no trusted set-up or public keys.\",\"PeriodicalId\":228365,\"journal\":{\"name\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/110847196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/110847196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions
We construct the first general secure computation protocols that require no trusted infrastructure other than authenticated communication, and that satisfy a meaningful notion of security that is preserved under universal composition—{\em assuming only the existence of enhanced trapdoor permutations.} The notion of security fits within a generalization of the ``angel-based'' framework of Prabhakaran and Sahai (STOC'04) and implies super-polynomial time simulation security. Security notions of this kind are currently known to be realizable only under strong and specific hardness assumptions. A key element in our construction is a commitment scheme that satisfies a new and strong notion of security. The notion, security against chosen-commitment-attacks (CCA security), means that security holds even if the attacker has access to a {\em extraction oracle} that gives the adversary decommitment information to commitments of the adversary's choice. This notion is stronger than concurrent non-malleability and is of independent interest. We construct CCA-secure commitments based on standard one-way functions, and with no trusted set-up. To the best of our knowledge, this provides the first construction of a natural cryptographic primitive requiring \emph{adaptive hardness} from standard hardness assumptions, using no trusted set-up or public keys.