估计正态尾概率

A. Rukhin
{"title":"估计正态尾概率","authors":"A. Rukhin","doi":"10.1002/NAV.3800330108","DOIUrl":null,"url":null,"abstract":"The estimation problem of normal tail probabilities is considered. The form of generalized Bayes estimators is derived and the asymptotic behavior of the mean square errors is studied. This study shows that the best unbiased estimator, a formula for which is given, is superior to the maximum likelihoood estimator or to a class of generalized Bayes procedures for large parametric values, but can be significantly improved for moderate values of the parameter.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating normal tail probabilities\",\"authors\":\"A. Rukhin\",\"doi\":\"10.1002/NAV.3800330108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation problem of normal tail probabilities is considered. The form of generalized Bayes estimators is derived and the asymptotic behavior of the mean square errors is studied. This study shows that the best unbiased estimator, a formula for which is given, is superior to the maximum likelihoood estimator or to a class of generalized Bayes procedures for large parametric values, but can be significantly improved for moderate values of the parameter.\",\"PeriodicalId\":431817,\"journal\":{\"name\":\"Naval Research Logistics Quarterly\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NAV.3800330108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了正态尾概率的估计问题。导出了广义贝叶斯估计量的形式,研究了均方误差的渐近性质。研究表明,对于大参数值,最佳无偏估计量优于极大似然估计量或一类广义贝叶斯过程,但对于中等参数值,最佳无偏估计量可以得到显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating normal tail probabilities
The estimation problem of normal tail probabilities is considered. The form of generalized Bayes estimators is derived and the asymptotic behavior of the mean square errors is studied. This study shows that the best unbiased estimator, a formula for which is given, is superior to the maximum likelihoood estimator or to a class of generalized Bayes procedures for large parametric values, but can be significantly improved for moderate values of the parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On estimating population characteristics from record‐breaking observations. i. parametric results Optimal replacement for fault‐tolerant systems Algorithms for the minimax transportation problem Nature of renyi's entropy and associated divergence function Rescheduling to minimize makespan on a changing number of identical processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1