基于频率先验的二分类图像分割

Yan Zhou, Bo Dong, Yuanfeng Wu, Wentao Zhu, Geng Chen, Yanning Zhang
{"title":"基于频率先验的二分类图像分割","authors":"Yan Zhou, Bo Dong, Yuanfeng Wu, Wentao Zhu, Geng Chen, Yanning Zhang","doi":"10.24963/ijcai.2023/202","DOIUrl":null,"url":null,"abstract":"Dichotomous image segmentation (DIS) has a wide range of real-world applications and gained increasing research attention in recent years. In this paper, we propose to tackle DIS with informative frequency priors. Our model, called FP-DIS, stems from the fact that prior knowledge in the frequency domain can provide valuable cues to identify fine-grained object boundaries. Specifically, we propose a frequency prior generator to jointly utilize a fixed filter and learnable filters to extract informative frequency priors. Before embedding the frequency priors into the network, we first harmonize the multi-scale side-out features to reduce their heterogeneity. This is achieved by our feature harmonization module, which is based on a gating mechanism to harmonize the grouped features. Finally, we propose a frequency prior embedding module to embed the frequency priors into multi-scale features through an adaptive modulation strategy. Extensive experiments on the benchmark dataset, DIS5K, demonstrate that our FP-DIS outperforms state-of-the-art methods by a large margin in terms of key evaluation metrics.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"33 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dichotomous Image Segmentation with Frequency Priors\",\"authors\":\"Yan Zhou, Bo Dong, Yuanfeng Wu, Wentao Zhu, Geng Chen, Yanning Zhang\",\"doi\":\"10.24963/ijcai.2023/202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dichotomous image segmentation (DIS) has a wide range of real-world applications and gained increasing research attention in recent years. In this paper, we propose to tackle DIS with informative frequency priors. Our model, called FP-DIS, stems from the fact that prior knowledge in the frequency domain can provide valuable cues to identify fine-grained object boundaries. Specifically, we propose a frequency prior generator to jointly utilize a fixed filter and learnable filters to extract informative frequency priors. Before embedding the frequency priors into the network, we first harmonize the multi-scale side-out features to reduce their heterogeneity. This is achieved by our feature harmonization module, which is based on a gating mechanism to harmonize the grouped features. Finally, we propose a frequency prior embedding module to embed the frequency priors into multi-scale features through an adaptive modulation strategy. Extensive experiments on the benchmark dataset, DIS5K, demonstrate that our FP-DIS outperforms state-of-the-art methods by a large margin in terms of key evaluation metrics.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"33 1-2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二分类图像分割(DIS)在现实世界中有着广泛的应用,近年来受到越来越多的研究关注。在本文中,我们提出用信息频率先验来处理DIS。我们的模型,称为FP-DIS,源于频域的先验知识可以为识别细粒度对象边界提供有价值的线索。具体来说,我们提出了一种频率先验生成器,它联合使用固定滤波器和可学习滤波器来提取信息频率先验。在将频率先验嵌入网络之前,我们首先对多尺度侧出特征进行协调,以降低其异质性。这是通过我们的特征协调模块实现的,该模块基于一个门控机制来协调分组的特征。最后,我们提出了一个频率先验嵌入模块,通过自适应调制策略将频率先验嵌入到多尺度特征中。在基准数据集DIS5K上进行的大量实验表明,就关键评估指标而言,我们的FP-DIS在很大程度上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dichotomous Image Segmentation with Frequency Priors
Dichotomous image segmentation (DIS) has a wide range of real-world applications and gained increasing research attention in recent years. In this paper, we propose to tackle DIS with informative frequency priors. Our model, called FP-DIS, stems from the fact that prior knowledge in the frequency domain can provide valuable cues to identify fine-grained object boundaries. Specifically, we propose a frequency prior generator to jointly utilize a fixed filter and learnable filters to extract informative frequency priors. Before embedding the frequency priors into the network, we first harmonize the multi-scale side-out features to reduce their heterogeneity. This is achieved by our feature harmonization module, which is based on a gating mechanism to harmonize the grouped features. Finally, we propose a frequency prior embedding module to embed the frequency priors into multi-scale features through an adaptive modulation strategy. Extensive experiments on the benchmark dataset, DIS5K, demonstrate that our FP-DIS outperforms state-of-the-art methods by a large margin in terms of key evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1