用时延探地雷达和电磁干扰测量表征农业管理技术

J. Schmäck, F. Hansen, J. van der Kruk, H. Vereecken, A. Klotzsche
{"title":"用时延探地雷达和电磁干扰测量表征农业管理技术","authors":"J. Schmäck, F. Hansen, J. van der Kruk, H. Vereecken, A. Klotzsche","doi":"10.1109/iwagpr50767.2021.9843161","DOIUrl":null,"url":null,"abstract":"Climate change in the 21st century has led to concerns about the future of food security for populations around the globe. As a result of this, precision agriculture becomes increasingly necessary to increase agricultural production in a sustainable manner as well as food safety. In this project, the use of ground penetrating radar (GPR) and electromagnetic induction (EMI) to support precision agriculture is investigated. Therefore, two geophysical surveys were conducted on a sandy field site, which is used to investigate subsoil management techniques. In the period between the two measurement campaigns, three variations of furrowing were applied to two different crop rotations. EMI analyses showed differences between the crop rotations, but no significant changes between the different management techniques. For an in-depth analysis an automatic semblance analysis was used to create velocity models of the subsurface from simultaneous multi-offset-multi-channel (SiMOC)-GPR data, which in turn were used to estimate the dielectric permittivity. Structural changes were observed in the GPR data, which could be correlated to the application of management techniques, and these changes were depending on the applied management technique.","PeriodicalId":170169,"journal":{"name":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing agricultural management techniques with timelapse GPR and EMI measurements\",\"authors\":\"J. Schmäck, F. Hansen, J. van der Kruk, H. Vereecken, A. Klotzsche\",\"doi\":\"10.1109/iwagpr50767.2021.9843161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change in the 21st century has led to concerns about the future of food security for populations around the globe. As a result of this, precision agriculture becomes increasingly necessary to increase agricultural production in a sustainable manner as well as food safety. In this project, the use of ground penetrating radar (GPR) and electromagnetic induction (EMI) to support precision agriculture is investigated. Therefore, two geophysical surveys were conducted on a sandy field site, which is used to investigate subsoil management techniques. In the period between the two measurement campaigns, three variations of furrowing were applied to two different crop rotations. EMI analyses showed differences between the crop rotations, but no significant changes between the different management techniques. For an in-depth analysis an automatic semblance analysis was used to create velocity models of the subsurface from simultaneous multi-offset-multi-channel (SiMOC)-GPR data, which in turn were used to estimate the dielectric permittivity. Structural changes were observed in the GPR data, which could be correlated to the application of management techniques, and these changes were depending on the applied management technique.\",\"PeriodicalId\":170169,\"journal\":{\"name\":\"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iwagpr50767.2021.9843161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iwagpr50767.2021.9843161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

21世纪的气候变化引发了对全球人口粮食安全未来的担忧。因此,精准农业对于以可持续的方式增加农业生产和食品安全变得越来越必要。在这个项目中,使用探地雷达(GPR)和电磁感应(EMI)来支持精准农业进行了研究。为此,对某沙田进行了两次地球物理调查,探讨了底土管理技术。在两次测量活动之间,对两种不同的作物轮作施用了三种不同的犁沟。电磁干扰分析显示作物轮作之间存在差异,但不同管理技术之间没有显著变化。为了进行更深入的分析,使用自动相似分析从同时多偏移多通道(SiMOC)-GPR数据中创建地下速度模型,然后使用该模型来估计介电常数。探地雷达数据的结构变化可能与管理技术的应用有关,这些变化取决于所应用的管理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing agricultural management techniques with timelapse GPR and EMI measurements
Climate change in the 21st century has led to concerns about the future of food security for populations around the globe. As a result of this, precision agriculture becomes increasingly necessary to increase agricultural production in a sustainable manner as well as food safety. In this project, the use of ground penetrating radar (GPR) and electromagnetic induction (EMI) to support precision agriculture is investigated. Therefore, two geophysical surveys were conducted on a sandy field site, which is used to investigate subsoil management techniques. In the period between the two measurement campaigns, three variations of furrowing were applied to two different crop rotations. EMI analyses showed differences between the crop rotations, but no significant changes between the different management techniques. For an in-depth analysis an automatic semblance analysis was used to create velocity models of the subsurface from simultaneous multi-offset-multi-channel (SiMOC)-GPR data, which in turn were used to estimate the dielectric permittivity. Structural changes were observed in the GPR data, which could be correlated to the application of management techniques, and these changes were depending on the applied management technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Adam and SGD optimizers to train AlexNet for classifying GPR C-scans featuring ancient structures Polarimetric Alpha Angle versus Relative Permittivity with Dual-Polarimetric GPR Experiments GPR Monitoring at the Crypt of Sant’Agnese in Agone Church, Rome, Italy Evaluation of the possibility of using the radio frequency range for the survey of the Great Pyramid Full Waveform Inversion of common offset GPR data using a fast deep learning based forward solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1