Pingqiang Zhou, Jieming Yin, Antonia Zhai, S. Sapatnekar
{"title":"柔性管道路由器的NoC频率缩放","authors":"Pingqiang Zhou, Jieming Yin, Antonia Zhai, S. Sapatnekar","doi":"10.1109/ISLPED.2011.5993674","DOIUrl":null,"url":null,"abstract":"Voltage and frequency scaling (VFS) for NoC can potentially reduce energy consumption, but the associated increase in latency and degradation in throughput limits its deployment. We propose flexible-pipeline routers that reconfigure pipeline stages upon VFS, so that latency through such routers remains constant. With minimal hardware overhead, the deployment of such routers allows us to reduce network frequency and save network energy, without significant performance degradation. Furthermore, we demonstrate the use of simple performance metrics to determine the optimal operation frequency, considering the energy/performance impact on all aspects of the system — the cores, the caches and the interconnection network.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"NoC frequency scaling with flexible-pipeline routers\",\"authors\":\"Pingqiang Zhou, Jieming Yin, Antonia Zhai, S. Sapatnekar\",\"doi\":\"10.1109/ISLPED.2011.5993674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage and frequency scaling (VFS) for NoC can potentially reduce energy consumption, but the associated increase in latency and degradation in throughput limits its deployment. We propose flexible-pipeline routers that reconfigure pipeline stages upon VFS, so that latency through such routers remains constant. With minimal hardware overhead, the deployment of such routers allows us to reduce network frequency and save network energy, without significant performance degradation. Furthermore, we demonstrate the use of simple performance metrics to determine the optimal operation frequency, considering the energy/performance impact on all aspects of the system — the cores, the caches and the interconnection network.\",\"PeriodicalId\":117694,\"journal\":{\"name\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2011.5993674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NoC frequency scaling with flexible-pipeline routers
Voltage and frequency scaling (VFS) for NoC can potentially reduce energy consumption, but the associated increase in latency and degradation in throughput limits its deployment. We propose flexible-pipeline routers that reconfigure pipeline stages upon VFS, so that latency through such routers remains constant. With minimal hardware overhead, the deployment of such routers allows us to reduce network frequency and save network energy, without significant performance degradation. Furthermore, we demonstrate the use of simple performance metrics to determine the optimal operation frequency, considering the energy/performance impact on all aspects of the system — the cores, the caches and the interconnection network.