高含量筛选中基于形态学的自适应细胞分割和定量分析

J. Angulo, B. Schaack
{"title":"高含量筛选中基于形态学的自适应细胞分割和定量分析","authors":"J. Angulo, B. Schaack","doi":"10.1109/ISBI.2008.4541007","DOIUrl":null,"url":null,"abstract":"In fluorescence-labelled cell assays for high content screening applications, image processing software is necessary to have automatic algorithms for segmenting the cells individually and for quantifying their intensities, size/shape parameters, etc. Mathematical morphology is a non-linear image processing technique which is proven to be a very powerful tool in biomedical microscopy image analysis. This paper presents a morphological methodology based on connected filters, watershed transformation and granulometries for segmenting cells of different size, contrast, etc. In particular, the performance of the algorithms is illustrated with cell images from a toxicity assay in three-labels (Hoechst, EGFP, Phalloi'din) on nanodrops cell-on-chip format.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Morphological-based adaptive segmentation and quantification of cell assays in high content screening\",\"authors\":\"J. Angulo, B. Schaack\",\"doi\":\"10.1109/ISBI.2008.4541007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fluorescence-labelled cell assays for high content screening applications, image processing software is necessary to have automatic algorithms for segmenting the cells individually and for quantifying their intensities, size/shape parameters, etc. Mathematical morphology is a non-linear image processing technique which is proven to be a very powerful tool in biomedical microscopy image analysis. This paper presents a morphological methodology based on connected filters, watershed transformation and granulometries for segmenting cells of different size, contrast, etc. In particular, the performance of the algorithms is illustrated with cell images from a toxicity assay in three-labels (Hoechst, EGFP, Phalloi'din) on nanodrops cell-on-chip format.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在用于高含量筛选应用的荧光标记细胞分析中,图像处理软件必须具有自动算法,用于单独分割细胞并量化其强度,大小/形状参数等。数学形态学是一种非线性图像处理技术,已被证明是生物医学显微图像分析的有力工具。本文提出了一种基于连通滤波器、分水岭变换和粒度测量的形态学方法,用于分割不同大小、对比度等的细胞。特别是,算法的性能用纳米滴细胞片上格式的三标签(Hoechst, EGFP, Phalloi'din)毒性试验的细胞图像来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological-based adaptive segmentation and quantification of cell assays in high content screening
In fluorescence-labelled cell assays for high content screening applications, image processing software is necessary to have automatic algorithms for segmenting the cells individually and for quantifying their intensities, size/shape parameters, etc. Mathematical morphology is a non-linear image processing technique which is proven to be a very powerful tool in biomedical microscopy image analysis. This paper presents a morphological methodology based on connected filters, watershed transformation and granulometries for segmenting cells of different size, contrast, etc. In particular, the performance of the algorithms is illustrated with cell images from a toxicity assay in three-labels (Hoechst, EGFP, Phalloi'din) on nanodrops cell-on-chip format.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1