HOQRI:可扩展Tucker分解的高阶QR迭代

Yuchen Sun, Kejun Huang
{"title":"HOQRI:可扩展Tucker分解的高阶QR迭代","authors":"Yuchen Sun, Kejun Huang","doi":"10.1109/icassp43922.2022.9746726","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm called higher-order QR iteration (HO-QRI) for computing the Tucker decomposition of large and sparse tensors. Compared to the celebrated higher-order orthogonal iterations (HOOI), HOQRI relies on a simple orthogonalization step in each iteration rather than a more sophisticated singular value de-composition step as in HOOI. More importantly, when dealing with extremely large and sparse data tensors, HOQRI completely eliminates the intermediate memory explosion by defining a new sparse tensor operation called TTMcTC. Furthermore, HOQRI is shown to monotonically improve the objective function, thus enjoying the same convergence guarantee as that of HOOI. Numerical experiments on synthetic and real data showcase the effectiveness of HOQRI.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HOQRI: Higher-Order QR Iteration for Scalable Tucker Decomposition\",\"authors\":\"Yuchen Sun, Kejun Huang\",\"doi\":\"10.1109/icassp43922.2022.9746726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new algorithm called higher-order QR iteration (HO-QRI) for computing the Tucker decomposition of large and sparse tensors. Compared to the celebrated higher-order orthogonal iterations (HOOI), HOQRI relies on a simple orthogonalization step in each iteration rather than a more sophisticated singular value de-composition step as in HOOI. More importantly, when dealing with extremely large and sparse data tensors, HOQRI completely eliminates the intermediate memory explosion by defining a new sparse tensor operation called TTMcTC. Furthermore, HOQRI is shown to monotonically improve the objective function, thus enjoying the same convergence guarantee as that of HOOI. Numerical experiments on synthetic and real data showcase the effectiveness of HOQRI.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种新的算法,称为高阶QR迭代(HO-QRI),用于计算大张量和稀疏张量的Tucker分解。与著名的高阶正交迭代(HOOI)相比,HOQRI在每次迭代中依赖于简单的正交化步骤,而不是像HOOI中那样依赖于更复杂的奇异值分解步骤。更重要的是,在处理超大稀疏数据张量时,HOQRI通过定义一种新的稀疏张量操作TTMcTC,完全消除了中间内存爆炸。此外,HOQRI对目标函数进行单调改进,具有与HOOI相同的收敛性保证。综合数据和实际数据的数值实验证明了HOQRI的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOQRI: Higher-Order QR Iteration for Scalable Tucker Decomposition
We propose a new algorithm called higher-order QR iteration (HO-QRI) for computing the Tucker decomposition of large and sparse tensors. Compared to the celebrated higher-order orthogonal iterations (HOOI), HOQRI relies on a simple orthogonalization step in each iteration rather than a more sophisticated singular value de-composition step as in HOOI. More importantly, when dealing with extremely large and sparse data tensors, HOQRI completely eliminates the intermediate memory explosion by defining a new sparse tensor operation called TTMcTC. Furthermore, HOQRI is shown to monotonically improve the objective function, thus enjoying the same convergence guarantee as that of HOOI. Numerical experiments on synthetic and real data showcase the effectiveness of HOQRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1