语音到语音翻译系统中基于类的命名实体翻译

S. Maskey, Martin Cmejrek, Bowen Zhou, Yuqing Gao
{"title":"语音到语音翻译系统中基于类的命名实体翻译","authors":"S. Maskey, Martin Cmejrek, Bowen Zhou, Yuqing Gao","doi":"10.1109/SLT.2008.4777888","DOIUrl":null,"url":null,"abstract":"Named entity (NE) translation is a challenging problem in machine translation (MT). Most of the training bi-text corpora for MT lack enough samples of NEs to cover the wide variety of contexts NEs can appear in. In this paper, we present a technique to translate NEs based on their NE types in addition to a phrase-based translation model. Our NE translation model is based on a syntax-based system similar to the work of Chiang (2005); but we produce syntax-based rules with non-terminals as NE types instead of general non-terminals. Such class-based rules allow us to better generalize the context NEs. We show that our proposed method obtains an improvement of 0.66 BLEU score absolute as well as 0.26% in F1-measure over the baseline of phrase-based model in NE test set.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Class-based named entity translation in a speech to speech translation system\",\"authors\":\"S. Maskey, Martin Cmejrek, Bowen Zhou, Yuqing Gao\",\"doi\":\"10.1109/SLT.2008.4777888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named entity (NE) translation is a challenging problem in machine translation (MT). Most of the training bi-text corpora for MT lack enough samples of NEs to cover the wide variety of contexts NEs can appear in. In this paper, we present a technique to translate NEs based on their NE types in addition to a phrase-based translation model. Our NE translation model is based on a syntax-based system similar to the work of Chiang (2005); but we produce syntax-based rules with non-terminals as NE types instead of general non-terminals. Such class-based rules allow us to better generalize the context NEs. We show that our proposed method obtains an improvement of 0.66 BLEU score absolute as well as 0.26% in F1-measure over the baseline of phrase-based model in NE test set.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

命名实体(NE)翻译是机器翻译中一个具有挑战性的问题。大多数用于机器翻译的训练双文语料库缺乏足够的网元样本来覆盖网元可能出现的各种上下文。在本文中,除了基于短语的翻译模型外,我们还提出了一种基于网元类型的翻译技术。我们的NE翻译模型是基于一个类似于Chiang(2005)的基于语法的系统;但是我们生成基于语法的规则,将非终结符作为网元类型,而不是一般的非终结符。这种基于类的规则使我们能够更好地概括上下文网元。结果表明,本文提出的方法在NE测试集中比基于短语的模型的基线提高了0.66 BLEU绝对分数和0.26%的f1测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Class-based named entity translation in a speech to speech translation system
Named entity (NE) translation is a challenging problem in machine translation (MT). Most of the training bi-text corpora for MT lack enough samples of NEs to cover the wide variety of contexts NEs can appear in. In this paper, we present a technique to translate NEs based on their NE types in addition to a phrase-based translation model. Our NE translation model is based on a syntax-based system similar to the work of Chiang (2005); but we produce syntax-based rules with non-terminals as NE types instead of general non-terminals. Such class-based rules allow us to better generalize the context NEs. We show that our proposed method obtains an improvement of 0.66 BLEU score absolute as well as 0.26% in F1-measure over the baseline of phrase-based model in NE test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1