{"title":"量子干涉在产生非经典态中的作用","authors":"P. Domokos, J. Janszky, P. Adam, T. Larsen","doi":"10.1088/0954-8998/6/3/005","DOIUrl":null,"url":null,"abstract":"Approximating a continuous superposition by a discrete one leads to an understanding of the role of quantum interference in generating squeezed coherent states, and in its quantum properties. It was shown that discrete superposition with a large enough number of coherent states with appropriate coefficients can have practically the same features as the squeezed coherent state. Dependent on the parameters W, r and 8, different numbers of coherent states are required for the interference fringe to form a Wigner function resembling that of the squeezed vacuum state and to reduce the deviation below a certain value. For the case of rotating the direction of squeezing, about 20 states were required to lower the deviation to 0.05%, while 640 states would be necessary when a unit displacement along the imaginary axis is included. When only a few coherent states are superimposed, the resulting state changes chaotically. In the case when the approximated squeezed coherent state was displaced along the imaginary axis an interesting Schrodinger cat-like state was found with about 20 coherent states on the real axis. At this point a significant peak occurs in the variances of the quadratures. It turned out that non-classical states can be effectively produced by a discrete superposition of coherent states with the coefficients derived from the one-dimensional representation of the given state.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Role of quantum interference in producing non-classical states\",\"authors\":\"P. Domokos, J. Janszky, P. Adam, T. Larsen\",\"doi\":\"10.1088/0954-8998/6/3/005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximating a continuous superposition by a discrete one leads to an understanding of the role of quantum interference in generating squeezed coherent states, and in its quantum properties. It was shown that discrete superposition with a large enough number of coherent states with appropriate coefficients can have practically the same features as the squeezed coherent state. Dependent on the parameters W, r and 8, different numbers of coherent states are required for the interference fringe to form a Wigner function resembling that of the squeezed vacuum state and to reduce the deviation below a certain value. For the case of rotating the direction of squeezing, about 20 states were required to lower the deviation to 0.05%, while 640 states would be necessary when a unit displacement along the imaginary axis is included. When only a few coherent states are superimposed, the resulting state changes chaotically. In the case when the approximated squeezed coherent state was displaced along the imaginary axis an interesting Schrodinger cat-like state was found with about 20 coherent states on the real axis. At this point a significant peak occurs in the variances of the quadratures. It turned out that non-classical states can be effectively produced by a discrete superposition of coherent states with the coefficients derived from the one-dimensional representation of the given state.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/6/3/005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/6/3/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of quantum interference in producing non-classical states
Approximating a continuous superposition by a discrete one leads to an understanding of the role of quantum interference in generating squeezed coherent states, and in its quantum properties. It was shown that discrete superposition with a large enough number of coherent states with appropriate coefficients can have practically the same features as the squeezed coherent state. Dependent on the parameters W, r and 8, different numbers of coherent states are required for the interference fringe to form a Wigner function resembling that of the squeezed vacuum state and to reduce the deviation below a certain value. For the case of rotating the direction of squeezing, about 20 states were required to lower the deviation to 0.05%, while 640 states would be necessary when a unit displacement along the imaginary axis is included. When only a few coherent states are superimposed, the resulting state changes chaotically. In the case when the approximated squeezed coherent state was displaced along the imaginary axis an interesting Schrodinger cat-like state was found with about 20 coherent states on the real axis. At this point a significant peak occurs in the variances of the quadratures. It turned out that non-classical states can be effectively produced by a discrete superposition of coherent states with the coefficients derived from the one-dimensional representation of the given state.