用于合成多层计算机网络的分子组装工具

S. Habib, P. Marimuthu
{"title":"用于合成多层计算机网络的分子组装工具","authors":"S. Habib, P. Marimuthu","doi":"10.1109/ICTAI.2011.141","DOIUrl":null,"url":null,"abstract":"We have proposed a design tool for synthesizing multitier computer networks based on the concept of molecular assembly (MA), where the network's nodes integrate intelligently together by exploiting various forces of attraction existing between the nodes. Three forces are defined and the forces are the distance force, the incoming flow force and the outgoing flow force. Our simulation results demonstrate that for a given unassembled network of 50 nodes, our design tool forms a self-assembled network and manages to reduce the traffic at the backbone by 40% in a short computing time.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Molecular Assembly Tool for Synthesizing Multitier Computer Networks\",\"authors\":\"S. Habib, P. Marimuthu\",\"doi\":\"10.1109/ICTAI.2011.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed a design tool for synthesizing multitier computer networks based on the concept of molecular assembly (MA), where the network's nodes integrate intelligently together by exploiting various forces of attraction existing between the nodes. Three forces are defined and the forces are the distance force, the incoming flow force and the outgoing flow force. Our simulation results demonstrate that for a given unassembled network of 50 nodes, our design tool forms a self-assembled network and manages to reduce the traffic at the backbone by 40% in a short computing time.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于分子组装(MA)概念的多层计算机网络合成设计工具,其中网络节点通过利用节点之间存在的各种吸引力智能地集成在一起。定义了三种力,分别是距离力、流入力和流出力。我们的仿真结果表明,对于给定的50个节点的未组装网络,我们的设计工具形成了一个自组装网络,并在短的计算时间内成功地将骨干网络的流量减少了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Assembly Tool for Synthesizing Multitier Computer Networks
We have proposed a design tool for synthesizing multitier computer networks based on the concept of molecular assembly (MA), where the network's nodes integrate intelligently together by exploiting various forces of attraction existing between the nodes. Three forces are defined and the forces are the distance force, the incoming flow force and the outgoing flow force. Our simulation results demonstrate that for a given unassembled network of 50 nodes, our design tool forms a self-assembled network and manages to reduce the traffic at the backbone by 40% in a short computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1