{"title":"增材制造纳米纤维增强生物活性玻璃基功能分级骨组织工程支架","authors":"K. Dixit, N. Sinha","doi":"10.1109/NANOMED49242.2019.9130605","DOIUrl":null,"url":null,"abstract":"In this work, functionally graded scaffolds of nanofiber reinforced bioactive glass have been fabricated using additive manufacturing technique. The bioactive glass was synthesized using sol-gel method. Pluronic F-127 was used as ink carrier for fabricating the scaffolds. The reinforced nanofibers are uniformly dispersed in the bioactive glass matrix. The inclusion of nanofiber showed 94% enhancement in the compressive strength of the fabricated scaffolds demonstrating their potential for bone tissue engineering applications.","PeriodicalId":443566,"journal":{"name":"2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Additively Manufactured Nanofiber Reinforced Bioactive Glass Based Functionally Graded Scaffolds for Bone Tissue Engineering\",\"authors\":\"K. Dixit, N. Sinha\",\"doi\":\"10.1109/NANOMED49242.2019.9130605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, functionally graded scaffolds of nanofiber reinforced bioactive glass have been fabricated using additive manufacturing technique. The bioactive glass was synthesized using sol-gel method. Pluronic F-127 was used as ink carrier for fabricating the scaffolds. The reinforced nanofibers are uniformly dispersed in the bioactive glass matrix. The inclusion of nanofiber showed 94% enhancement in the compressive strength of the fabricated scaffolds demonstrating their potential for bone tissue engineering applications.\",\"PeriodicalId\":443566,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOMED49242.2019.9130605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED49242.2019.9130605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additively Manufactured Nanofiber Reinforced Bioactive Glass Based Functionally Graded Scaffolds for Bone Tissue Engineering
In this work, functionally graded scaffolds of nanofiber reinforced bioactive glass have been fabricated using additive manufacturing technique. The bioactive glass was synthesized using sol-gel method. Pluronic F-127 was used as ink carrier for fabricating the scaffolds. The reinforced nanofibers are uniformly dispersed in the bioactive glass matrix. The inclusion of nanofiber showed 94% enhancement in the compressive strength of the fabricated scaffolds demonstrating their potential for bone tissue engineering applications.