多松弛终端直流微电网实时运行能量管理系统(EMS)

Peng Wang, Jianfang Xiao, Leonardy Setyawan, Choo Hoong
{"title":"多松弛终端直流微电网实时运行能量管理系统(EMS)","authors":"Peng Wang, Jianfang Xiao, Leonardy Setyawan, Choo Hoong","doi":"10.1109/ISGTEUROPE.2014.7028829","DOIUrl":null,"url":null,"abstract":"DC microgrid with multiple slack terminals has higher system reliability in case of slack terminal outage and communication failure. However, system bus voltage deviation from the nominal value and power sharing error are the main drawbacks of the droop-based distributed control. A three-level Energy Management System (EMS) is proposed in this paper to ensure both fast response and accurate control of the multiple-slack-terminal DC microgrid. All Energy Storages (ESs) are scheduled to operate in voltage regulation mode in level I control. The bus voltage regulation and power sharing among ESs are realized based on local bus voltage autonomously. In level II, bus voltage restoration and power sharing compensation are implemented to eliminate voltage deviation and power sharing error accordingly. Level III control takes the constraints of ESs' power capacity and energy capacity into consideration. Load shedding and generation curtailment are to be activated based on the real-time system net power and ESs' State of Charge (SoC). Case studies based on MATLAB simulation were carried out to verify the effectiveness of proposed methods.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Energy management system (EMS) for real-time operation of DC microgrids with multiple slack terminals\",\"authors\":\"Peng Wang, Jianfang Xiao, Leonardy Setyawan, Choo Hoong\",\"doi\":\"10.1109/ISGTEUROPE.2014.7028829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DC microgrid with multiple slack terminals has higher system reliability in case of slack terminal outage and communication failure. However, system bus voltage deviation from the nominal value and power sharing error are the main drawbacks of the droop-based distributed control. A three-level Energy Management System (EMS) is proposed in this paper to ensure both fast response and accurate control of the multiple-slack-terminal DC microgrid. All Energy Storages (ESs) are scheduled to operate in voltage regulation mode in level I control. The bus voltage regulation and power sharing among ESs are realized based on local bus voltage autonomously. In level II, bus voltage restoration and power sharing compensation are implemented to eliminate voltage deviation and power sharing error accordingly. Level III control takes the constraints of ESs' power capacity and energy capacity into consideration. Load shedding and generation curtailment are to be activated based on the real-time system net power and ESs' State of Charge (SoC). Case studies based on MATLAB simulation were carried out to verify the effectiveness of proposed methods.\",\"PeriodicalId\":299515,\"journal\":{\"name\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEUROPE.2014.7028829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

具有多个松弛终端的直流微电网在松弛终端停运和通信中断的情况下具有更高的系统可靠性。然而,系统总线电压偏离标称值和功率共享误差是基于下垂的分布式控制的主要缺点。为了保证多端直流微电网的快速响应和精确控制,提出了一种三级能量管理系统。所有的储能系统(Energy storage, ESs)都被安排在I级控制的电压调节模式下运行。基于本地母线电压自主实现了ESs之间的母线电压调节和功率共享。在第二级,通过母线电压恢复和功率共享补偿来消除电压偏差和功率共享误差。III级控制考虑了ESs的功率容量和能量容量约束。根据实时系统净功率和ESs的荷电状态(SoC)来启动减载和弃电。基于MATLAB仿真的实例研究验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy management system (EMS) for real-time operation of DC microgrids with multiple slack terminals
DC microgrid with multiple slack terminals has higher system reliability in case of slack terminal outage and communication failure. However, system bus voltage deviation from the nominal value and power sharing error are the main drawbacks of the droop-based distributed control. A three-level Energy Management System (EMS) is proposed in this paper to ensure both fast response and accurate control of the multiple-slack-terminal DC microgrid. All Energy Storages (ESs) are scheduled to operate in voltage regulation mode in level I control. The bus voltage regulation and power sharing among ESs are realized based on local bus voltage autonomously. In level II, bus voltage restoration and power sharing compensation are implemented to eliminate voltage deviation and power sharing error accordingly. Level III control takes the constraints of ESs' power capacity and energy capacity into consideration. Load shedding and generation curtailment are to be activated based on the real-time system net power and ESs' State of Charge (SoC). Case studies based on MATLAB simulation were carried out to verify the effectiveness of proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete elastic residential load response under variable pricing schemes Challenges in utilisation of demand side response for operating reserve provision Managing energy in time and space in smart grids using TRIANA Optimal scheduling of electrical vehicle charging under two types of steering signals A design-driven approach for developing new products for smart grid households
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1