十字路口自动驾驶车辆的协调:决策、效率和控制

A. D. L. Fortelle
{"title":"十字路口自动驾驶车辆的协调:决策、效率和控制","authors":"A. D. L. Fortelle","doi":"10.1109/ITSC.2015.277","DOIUrl":null,"url":null,"abstract":"This papers studies the kind of control that is needed to efficiently coordinate multiple automated vehicles. An intersection is chosen in order to present the main concept but consequences of this work also hold for other areas of cooperation, such as lane changes or maneuvers in parking lots. We chose the classical framework for multi-robots systems: the coordination space i.e. we assume the future paths are known and fixed. The problem is to coordinate the speeds of the vehicles. We first prove a theorem stating that a smooth feedback control cannot always avoid gridlocks: for more than 2 vehicles, there are always starting states ending into gridlocks. The paper then proposes some ways to avoid this drawback, leading to a better conceptual way to take decision in such a cooperative system, in order to have provable efficient decision and control.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coordination of Automated Vehicles at Intersections: Decision, Efficiency and Control\",\"authors\":\"A. D. L. Fortelle\",\"doi\":\"10.1109/ITSC.2015.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This papers studies the kind of control that is needed to efficiently coordinate multiple automated vehicles. An intersection is chosen in order to present the main concept but consequences of this work also hold for other areas of cooperation, such as lane changes or maneuvers in parking lots. We chose the classical framework for multi-robots systems: the coordination space i.e. we assume the future paths are known and fixed. The problem is to coordinate the speeds of the vehicles. We first prove a theorem stating that a smooth feedback control cannot always avoid gridlocks: for more than 2 vehicles, there are always starting states ending into gridlocks. The paper then proposes some ways to avoid this drawback, leading to a better conceptual way to take decision in such a cooperative system, in order to have provable efficient decision and control.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了多台自动驾驶车辆有效协调所需的控制方式。选择一个十字路口是为了展示主要概念,但这项工作的结果也适用于其他合作领域,如车道变化或停车场的机动。我们选择了多机器人系统的经典框架:协调空间,即我们假设未来的路径是已知和固定的。问题是如何协调车辆的速度。我们首先证明了一个平滑反馈控制不能总是避免交通堵塞的定理:对于超过2辆车,总是有开始状态结束到交通堵塞。在此基础上,提出了避免这一缺陷的一些方法,从而提出了一种更好的概念性决策方法,以实现可证明的有效决策和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coordination of Automated Vehicles at Intersections: Decision, Efficiency and Control
This papers studies the kind of control that is needed to efficiently coordinate multiple automated vehicles. An intersection is chosen in order to present the main concept but consequences of this work also hold for other areas of cooperation, such as lane changes or maneuvers in parking lots. We chose the classical framework for multi-robots systems: the coordination space i.e. we assume the future paths are known and fixed. The problem is to coordinate the speeds of the vehicles. We first prove a theorem stating that a smooth feedback control cannot always avoid gridlocks: for more than 2 vehicles, there are always starting states ending into gridlocks. The paper then proposes some ways to avoid this drawback, leading to a better conceptual way to take decision in such a cooperative system, in order to have provable efficient decision and control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Area Traffic Prediction Using High Definition Maps and LiDAR for Safe Driving Assist ZEM 2 All Project (Zero Emission Mobility to All) Economic Analysis Based on the Interrelationships of the OLEV System Components Intelligent Driver Monitoring Based on Physiological Sensor Signals: Application Using Camera On Identifying Dynamic Intersections in Large Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1