使用主动学习的入侵检测系统生成对抗攻击

Dule Shu, Nandi O. Leslie, C. Kamhoua, Conrad S. Tucker
{"title":"使用主动学习的入侵检测系统生成对抗攻击","authors":"Dule Shu, Nandi O. Leslie, C. Kamhoua, Conrad S. Tucker","doi":"10.1145/3395352.3402618","DOIUrl":null,"url":null,"abstract":"Intrusion Detection Systems (IDS) are increasingly adopting machine learning (ML)-based approaches to detect threats in computer networks due to their ability to learn underlying threat patterns/features. However, ML-based models are susceptible to adversarial attacks, attacks wherein slight perturbations of the input features, cause misclassifications. We propose a method that uses active learning and generative adversarial networks to evaluate the threat of adversarial attacks on ML-based IDS. Existing adversarial attack methods require a large amount of training data or assume knowledge of the IDS model itself (e.g., loss function), which may not be possible in real-world settings. Our method overcomes these limitations by demonstrating the ability to compromise an IDS using limited training data and assuming no prior knowledge of the IDS model other than its binary classification (i.e., benign or malicious). Experimental results demonstrate the ability of our proposed model to achieve a 98.86% success rate in bypassing the IDS model using only 25 labeled data points during model training. The knowledge gained by compromising the ML-based IDS, can be integrated into the IDS in order to enhance its robustness against similar ML-based adversarial attacks.","PeriodicalId":370816,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Generative adversarial attacks against intrusion detection systems using active learning\",\"authors\":\"Dule Shu, Nandi O. Leslie, C. Kamhoua, Conrad S. Tucker\",\"doi\":\"10.1145/3395352.3402618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion Detection Systems (IDS) are increasingly adopting machine learning (ML)-based approaches to detect threats in computer networks due to their ability to learn underlying threat patterns/features. However, ML-based models are susceptible to adversarial attacks, attacks wherein slight perturbations of the input features, cause misclassifications. We propose a method that uses active learning and generative adversarial networks to evaluate the threat of adversarial attacks on ML-based IDS. Existing adversarial attack methods require a large amount of training data or assume knowledge of the IDS model itself (e.g., loss function), which may not be possible in real-world settings. Our method overcomes these limitations by demonstrating the ability to compromise an IDS using limited training data and assuming no prior knowledge of the IDS model other than its binary classification (i.e., benign or malicious). Experimental results demonstrate the ability of our proposed model to achieve a 98.86% success rate in bypassing the IDS model using only 25 labeled data points during model training. The knowledge gained by compromising the ML-based IDS, can be integrated into the IDS in order to enhance its robustness against similar ML-based adversarial attacks.\",\"PeriodicalId\":370816,\"journal\":{\"name\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3395352.3402618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395352.3402618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

入侵检测系统(IDS)越来越多地采用基于机器学习(ML)的方法来检测计算机网络中的威胁,因为它们能够学习潜在的威胁模式/特征。然而,基于ml的模型容易受到对抗性攻击,其中输入特征的轻微扰动会导致错误分类。我们提出了一种使用主动学习和生成对抗网络来评估基于ml的IDS对抗性攻击威胁的方法。现有的对抗性攻击方法需要大量的训练数据或假设IDS模型本身的知识(例如,损失函数),这在现实环境中可能是不可能的。我们的方法克服了这些限制,它展示了使用有限的训练数据破坏IDS的能力,并且假设除了IDS的二元分类(即良性或恶意)之外,不需要对IDS模型有任何先验知识。实验结果表明,我们提出的模型在模型训练过程中仅使用25个标记数据点就可以绕过IDS模型,成功率达到98.86%。通过破坏基于ml的IDS获得的知识可以集成到IDS中,以增强其对类似的基于ml的对抗性攻击的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative adversarial attacks against intrusion detection systems using active learning
Intrusion Detection Systems (IDS) are increasingly adopting machine learning (ML)-based approaches to detect threats in computer networks due to their ability to learn underlying threat patterns/features. However, ML-based models are susceptible to adversarial attacks, attacks wherein slight perturbations of the input features, cause misclassifications. We propose a method that uses active learning and generative adversarial networks to evaluate the threat of adversarial attacks on ML-based IDS. Existing adversarial attack methods require a large amount of training data or assume knowledge of the IDS model itself (e.g., loss function), which may not be possible in real-world settings. Our method overcomes these limitations by demonstrating the ability to compromise an IDS using limited training data and assuming no prior knowledge of the IDS model other than its binary classification (i.e., benign or malicious). Experimental results demonstrate the ability of our proposed model to achieve a 98.86% success rate in bypassing the IDS model using only 25 labeled data points during model training. The knowledge gained by compromising the ML-based IDS, can be integrated into the IDS in order to enhance its robustness against similar ML-based adversarial attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wideband spectral monitoring using deep learning Generalized wireless adversarial deep learning Retracted on July 26, 2022: Open set recognition through unsupervised and class-distance learning Encrypted rich-data steganography using generative adversarial networks Generative adversarial attacks against intrusion detection systems using active learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1