非正式位置描述的自动缩放级别预测

Igor Tytyk, Timothy Baldwin
{"title":"非正式位置描述的自动缩放级别预测","authors":"Igor Tytyk, Timothy Baldwin","doi":"10.1145/2663713.2664427","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the automatic prediction of the zoom level at which to present a map with results for an informal location description. We propose the use of identifiability (relative uniqueness) and zoom level of each component geospatial expression (GE) in the location description, as a means of predicting the appropriate zoom level for the overall description. We apply a simple classification approach to zoom level prediction, and compare results using gold-standard and automatically-inferred GE information. We find the approach to have strong promise, including relative to the zoom level used in results from Google Maps for our location descriptions dataset.","PeriodicalId":320466,"journal":{"name":"International Workshop on Location and the Web","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Zoom Level Prediction for Informal Location Descriptions\",\"authors\":\"Igor Tytyk, Timothy Baldwin\",\"doi\":\"10.1145/2663713.2664427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the automatic prediction of the zoom level at which to present a map with results for an informal location description. We propose the use of identifiability (relative uniqueness) and zoom level of each component geospatial expression (GE) in the location description, as a means of predicting the appropriate zoom level for the overall description. We apply a simple classification approach to zoom level prediction, and compare results using gold-standard and automatically-inferred GE information. We find the approach to have strong promise, including relative to the zoom level used in results from Google Maps for our location descriptions dataset.\",\"PeriodicalId\":320466,\"journal\":{\"name\":\"International Workshop on Location and the Web\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Location and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663713.2664427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Location and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663713.2664427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文关注的是自动预测缩放级别,在此级别上呈现带有非正式位置描述结果的地图。我们建议在位置描述中使用每个组件地理空间表达(GE)的可识别性(相对唯一性)和缩放级别,作为预测整体描述的适当缩放级别的一种手段。我们采用一种简单的分类方法来进行缩放级别预测,并使用金标准和自动推断的GE信息来比较结果。我们发现这种方法有很强的前景,包括相对于Google地图结果中使用的位置描述数据集的缩放级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Zoom Level Prediction for Informal Location Descriptions
This paper is concerned with the automatic prediction of the zoom level at which to present a map with results for an informal location description. We propose the use of identifiability (relative uniqueness) and zoom level of each component geospatial expression (GE) in the location description, as a means of predicting the appropriate zoom level for the overall description. We apply a simple classification approach to zoom level prediction, and compare results using gold-standard and automatically-inferred GE information. We find the approach to have strong promise, including relative to the zoom level used in results from Google Maps for our location descriptions dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Ways of Thinking About Where People Go Automatic Zoom Level Prediction for Informal Location Descriptions HMM-based Address Parsing with Massive Synthetic Training Data Generation Hybrid Quantized Resource Descriptions for Geospatial Source Selection Considering Common Data Model for Indoor Location-aware Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1