基于竞争无监督GrowCut的自主图像分割

R. Marginean, A. Andreica, L. Dioşan, Z. Bálint
{"title":"基于竞争无监督GrowCut的自主图像分割","authors":"R. Marginean, A. Andreica, L. Dioşan, Z. Bálint","doi":"10.1109/SYNASC49474.2019.00051","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Competitive Unsupervised GrowCut, a cellular automata-based, unsupervised and autonomous algorithm that combines the label merging component of Unsupervised GrowCut with the soft label propagation mechanism of GrowCut. We evaluated our algorithm on two benchmark image segmentation datasets, along with two related methods proposed in the literature. We also provide a detailed comparative analysis of the three algorithms' segmentation performance and properties. Our analysis identified application-specific regimes that govern the relative performance of the analyzed algorithms.","PeriodicalId":102054,"journal":{"name":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Autonomous Image Segmentation by Competitive Unsupervised GrowCut\",\"authors\":\"R. Marginean, A. Andreica, L. Dioşan, Z. Bálint\",\"doi\":\"10.1109/SYNASC49474.2019.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce Competitive Unsupervised GrowCut, a cellular automata-based, unsupervised and autonomous algorithm that combines the label merging component of Unsupervised GrowCut with the soft label propagation mechanism of GrowCut. We evaluated our algorithm on two benchmark image segmentation datasets, along with two related methods proposed in the literature. We also provide a detailed comparative analysis of the three algorithms' segmentation performance and properties. Our analysis identified application-specific regimes that govern the relative performance of the analyzed algorithms.\",\"PeriodicalId\":102054,\"journal\":{\"name\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC49474.2019.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC49474.2019.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一种基于元胞自动机的无监督自主算法——竞争性无监督GrowCut,该算法将无监督GrowCut的标签合并组件与GrowCut的软标签传播机制相结合。我们在两个基准图像分割数据集上评估了我们的算法,以及文献中提出的两种相关方法。我们还对三种算法的分割性能和性能进行了详细的比较分析。我们的分析确定了控制所分析算法的相对性能的特定于应用程序的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous Image Segmentation by Competitive Unsupervised GrowCut
In this paper, we introduce Competitive Unsupervised GrowCut, a cellular automata-based, unsupervised and autonomous algorithm that combines the label merging component of Unsupervised GrowCut with the soft label propagation mechanism of GrowCut. We evaluated our algorithm on two benchmark image segmentation datasets, along with two related methods proposed in the literature. We also provide a detailed comparative analysis of the three algorithms' segmentation performance and properties. Our analysis identified application-specific regimes that govern the relative performance of the analyzed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superposition Reasoning about Quantified Bitvector Formulas Improving Detection of Malicious Office Documents Using One-Side Classifiers An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequences and GCD Operation Multi-Control Virtual Reality Driving Simulator [Title page iii]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1