量子近似优化的多启动方法

Ruslan Shaydulin, Ilya Safro, Jeffrey Larson
{"title":"量子近似优化的多启动方法","authors":"Ruslan Shaydulin, Ilya Safro, Jeffrey Larson","doi":"10.1109/HPEC.2019.8916288","DOIUrl":null,"url":null,"abstract":"Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Multistart Methods for Quantum Approximate optimization\",\"authors\":\"Ruslan Shaydulin, Ilya Safro, Jeffrey Larson\",\"doi\":\"10.1109/HPEC.2019.8916288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

量子近似优化算法(QAOA)等混合量子经典算法被认为是利用近期量子计算机进行实际应用的最有前途的方法之一。这种算法通常以变分形式实现,将经典优化方法与量子机器相结合,以找到性能最大化的参数。QAOA解决方案的质量在很大程度上取决于经典优化器产生的参数的质量。此外,由于存在多个局部最优点,使得经典优化器难以识别出高质量的参数。在本文中,我们研究了在QAOA中使用多启动优化方法来提高量子机器在重要图聚类问题上的性能。我们还证明了重用来自类似问题的最优参数可以提高经典优化方法的性能,扩展了MAXCUT的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistart Methods for Quantum Approximate optimization
Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1