{"title":"量子近似优化的多启动方法","authors":"Ruslan Shaydulin, Ilya Safro, Jeffrey Larson","doi":"10.1109/HPEC.2019.8916288","DOIUrl":null,"url":null,"abstract":"Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Multistart Methods for Quantum Approximate optimization\",\"authors\":\"Ruslan Shaydulin, Ilya Safro, Jeffrey Larson\",\"doi\":\"10.1109/HPEC.2019.8916288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multistart Methods for Quantum Approximate optimization
Hybrid quantum-classical algorithms such as the quantum approximate optimization algorithm (QAOA) are considered one of the most promising approaches for leveraging near-term quantum computers for practical applications. Such algorithms are often implemented in a variational form, combining classical optimization methods with a quantum machine to find parameters that maximize performance. The quality of the QAOA solution depends heavily on quality of the parameters produced by the classical optimizer. Moreover, the presence of multiple local optima makes it difficult for the classical optimizer to identify high-quality parameters. In this paper we study the use of a multistart optimization approach within QAOA to improve the performance of quantum machines on important graph clustering problems. We also demonstrate that reusing the optimal parameters from similar problems can improve the performance of classical optimization methods, expanding on similar results for MAXCUT.