DVFS开发中的功耗建模

A. Castagnetti, C. Belleudy, S. Bilavarn, M. Auguin
{"title":"DVFS开发中的功耗建模","authors":"A. Castagnetti, C. Belleudy, S. Bilavarn, M. Auguin","doi":"10.1109/DSD.2010.55","DOIUrl":null,"url":null,"abstract":"A lot of task scheduling algorithms and power management policies have been developed based on simplistic power models, which rarely take into account the effects of the power consumptions of the different components of a real system. Most of the models on which the study of the DVFS scheduling is based, make the assumption that the power consumption of a processor could be modelled as a E ∝ V 2 model. This hypothesis, even if partly true, is not generally applicable when considering the complete system, which consists of the processor, memories and power conversion circuits. In this paper we present a power and energy model for a DVFS enabled mobile computing platform. The platform is based on a low power SoC, which integrates both the processor core and memory, as well as other hardware accelerators. We include in our analisys the study of the power conversion components, which supply the SoC. Starting from measures, we first characterize the power consumption of the SoC and the converters, then a power and energy model for the processor is proposed. The model is able to predict the power consumption of the processor core with an average error less than 10%. This is then used to analyse two DVFS scheduling techniques based on the EDF algorithm, Cycle Conserving and Look Ahead. The results show that the CPU energy saving computed using our model, is far less than what would be expected using a model that does not take into account the effect of the static power.","PeriodicalId":356885,"journal":{"name":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Power Consumption Modeling for DVFS Exploitation\",\"authors\":\"A. Castagnetti, C. Belleudy, S. Bilavarn, M. Auguin\",\"doi\":\"10.1109/DSD.2010.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of task scheduling algorithms and power management policies have been developed based on simplistic power models, which rarely take into account the effects of the power consumptions of the different components of a real system. Most of the models on which the study of the DVFS scheduling is based, make the assumption that the power consumption of a processor could be modelled as a E ∝ V 2 model. This hypothesis, even if partly true, is not generally applicable when considering the complete system, which consists of the processor, memories and power conversion circuits. In this paper we present a power and energy model for a DVFS enabled mobile computing platform. The platform is based on a low power SoC, which integrates both the processor core and memory, as well as other hardware accelerators. We include in our analisys the study of the power conversion components, which supply the SoC. Starting from measures, we first characterize the power consumption of the SoC and the converters, then a power and energy model for the processor is proposed. The model is able to predict the power consumption of the processor core with an average error less than 10%. This is then used to analyse two DVFS scheduling techniques based on the EDF algorithm, Cycle Conserving and Look Ahead. The results show that the CPU energy saving computed using our model, is far less than what would be expected using a model that does not take into account the effect of the static power.\",\"PeriodicalId\":356885,\"journal\":{\"name\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2010.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

许多任务调度算法和电源管理策略都是基于简单的功耗模型开发的,很少考虑实际系统中不同组件功耗的影响。研究DVFS调度的大多数模型都假设处理器的功耗可以用E∝v2模型来建模。这种假设即使部分正确,但在考虑由处理器、存储器和电源转换电路组成的完整系统时并不普遍适用。在本文中,我们提出了一个支持DVFS的移动计算平台的功率和能量模型。该平台基于低功耗SoC,集成了处理器核心和内存以及其他硬件加速器。在我们的分析中包括了对供电SoC的功率转换组件的研究。从测量的角度出发,首先对SoC和转换器的功耗进行了表征,然后提出了处理器的功耗和能量模型。该模型能够预测处理器核心的功耗,平均误差小于10%。然后分析了两种基于EDF算法的DVFS调度技术,循环保护和前瞻性。结果表明,使用我们的模型计算的CPU节能远远小于使用不考虑静态功率影响的模型所期望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Consumption Modeling for DVFS Exploitation
A lot of task scheduling algorithms and power management policies have been developed based on simplistic power models, which rarely take into account the effects of the power consumptions of the different components of a real system. Most of the models on which the study of the DVFS scheduling is based, make the assumption that the power consumption of a processor could be modelled as a E ∝ V 2 model. This hypothesis, even if partly true, is not generally applicable when considering the complete system, which consists of the processor, memories and power conversion circuits. In this paper we present a power and energy model for a DVFS enabled mobile computing platform. The platform is based on a low power SoC, which integrates both the processor core and memory, as well as other hardware accelerators. We include in our analisys the study of the power conversion components, which supply the SoC. Starting from measures, we first characterize the power consumption of the SoC and the converters, then a power and energy model for the processor is proposed. The model is able to predict the power consumption of the processor core with an average error less than 10%. This is then used to analyse two DVFS scheduling techniques based on the EDF algorithm, Cycle Conserving and Look Ahead. The results show that the CPU energy saving computed using our model, is far less than what would be expected using a model that does not take into account the effect of the static power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multicore SDR Architecture for Reconfigurable WiMAX Downlink Design of Testable Universal Logic Gate Targeting Minimum Wire-Crossings in QCA Logic Circuit Low Latency Recovery from Transient Faults for Pipelined Processor Architectures System Level Hardening by Computing with Matrices Reconfigurable Grid Alu Processor: Optimization and Design Space Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1